| L(s)  = 1 | − 2-s   − 3-s   + 4-s   − 3·5-s   + 6-s   + 7-s   − 8-s   − 2·9-s   + 3·10-s   − 3·11-s   − 12-s   − 6·13-s   − 14-s   + 3·15-s   + 16-s   − 5·17-s   + 2·18-s   + 5·19-s   − 3·20-s   − 21-s   + 3·22-s   − 8·23-s   + 24-s   + 4·25-s   + 6·26-s   + 5·27-s   + 28-s  + ⋯ | 
| L(s)  = 1 | − 0.707·2-s   − 0.577·3-s   + 1/2·4-s   − 1.34·5-s   + 0.408·6-s   + 0.377·7-s   − 0.353·8-s   − 2/3·9-s   + 0.948·10-s   − 0.904·11-s   − 0.288·12-s   − 1.66·13-s   − 0.267·14-s   + 0.774·15-s   + 1/4·16-s   − 1.21·17-s   + 0.471·18-s   + 1.14·19-s   − 0.670·20-s   − 0.218·21-s   + 0.639·22-s   − 1.66·23-s   + 0.204·24-s   + 4/5·25-s   + 1.17·26-s   + 0.962·27-s   + 0.188·28-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 3206 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3206 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 + T \) |  | 
|  | 7 | \( 1 - T \) |  | 
|  | 229 | \( 1 + T \) |  | 
| good | 3 | \( 1 + T + p T^{2} \) | 1.3.b | 
|  | 5 | \( 1 + 3 T + p T^{2} \) | 1.5.d | 
|  | 11 | \( 1 + 3 T + p T^{2} \) | 1.11.d | 
|  | 13 | \( 1 + 6 T + p T^{2} \) | 1.13.g | 
|  | 17 | \( 1 + 5 T + p T^{2} \) | 1.17.f | 
|  | 19 | \( 1 - 5 T + p T^{2} \) | 1.19.af | 
|  | 23 | \( 1 + 8 T + p T^{2} \) | 1.23.i | 
|  | 29 | \( 1 + 4 T + p T^{2} \) | 1.29.e | 
|  | 31 | \( 1 + p T^{2} \) | 1.31.a | 
|  | 37 | \( 1 + 10 T + p T^{2} \) | 1.37.k | 
|  | 41 | \( 1 + 12 T + p T^{2} \) | 1.41.m | 
|  | 43 | \( 1 + 9 T + p T^{2} \) | 1.43.j | 
|  | 47 | \( 1 - 4 T + p T^{2} \) | 1.47.ae | 
|  | 53 | \( 1 - 2 T + p T^{2} \) | 1.53.ac | 
|  | 59 | \( 1 + p T^{2} \) | 1.59.a | 
|  | 61 | \( 1 - T + p T^{2} \) | 1.61.ab | 
|  | 67 | \( 1 - 10 T + p T^{2} \) | 1.67.ak | 
|  | 71 | \( 1 - T + p T^{2} \) | 1.71.ab | 
|  | 73 | \( 1 + 8 T + p T^{2} \) | 1.73.i | 
|  | 79 | \( 1 - 12 T + p T^{2} \) | 1.79.am | 
|  | 83 | \( 1 + 3 T + p T^{2} \) | 1.83.d | 
|  | 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g | 
|  | 97 | \( 1 + 15 T + p T^{2} \) | 1.97.p | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.121599144406585454757807722295, −7.23647193806374039641682591444, −6.76253154160635381849505370308, −5.41871038981560489529134245702, −5.05307294473980732430810443088, −3.96197042669907703296377652947, −2.93792311141220772085794610168, −1.97246834137703663349024105293, 0, 0, 
1.97246834137703663349024105293, 2.93792311141220772085794610168, 3.96197042669907703296377652947, 5.05307294473980732430810443088, 5.41871038981560489529134245702, 6.76253154160635381849505370308, 7.23647193806374039641682591444, 8.121599144406585454757807722295
