Properties

Label 2-3206-1.1-c1-0-108
Degree $2$
Conductor $3206$
Sign $1$
Analytic cond. $25.6000$
Root an. cond. $5.05964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 3·5-s + 6-s + 7-s − 8-s − 2·9-s + 3·10-s − 3·11-s − 12-s − 6·13-s − 14-s + 3·15-s + 16-s − 5·17-s + 2·18-s + 5·19-s − 3·20-s − 21-s + 3·22-s − 8·23-s + 24-s + 4·25-s + 6·26-s + 5·27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.34·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.948·10-s − 0.904·11-s − 0.288·12-s − 1.66·13-s − 0.267·14-s + 0.774·15-s + 1/4·16-s − 1.21·17-s + 0.471·18-s + 1.14·19-s − 0.670·20-s − 0.218·21-s + 0.639·22-s − 1.66·23-s + 0.204·24-s + 4/5·25-s + 1.17·26-s + 0.962·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3206 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3206 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3206\)    =    \(2 \cdot 7 \cdot 229\)
Sign: $1$
Analytic conductor: \(25.6000\)
Root analytic conductor: \(5.05964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 3206,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
7 \( 1 - T \)
229 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 15 T + p T^{2} \) 1.97.p
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.121599144406585454757807722295, −7.23647193806374039641682591444, −6.76253154160635381849505370308, −5.41871038981560489529134245702, −5.05307294473980732430810443088, −3.96197042669907703296377652947, −2.93792311141220772085794610168, −1.97246834137703663349024105293, 0, 0, 1.97246834137703663349024105293, 2.93792311141220772085794610168, 3.96197042669907703296377652947, 5.05307294473980732430810443088, 5.41871038981560489529134245702, 6.76253154160635381849505370308, 7.23647193806374039641682591444, 8.121599144406585454757807722295

Graph of the $Z$-function along the critical line