Properties

Label 2-317130-1.1-c1-0-51
Degree $2$
Conductor $317130$
Sign $-1$
Analytic cond. $2532.29$
Root an. cond. $50.3219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s − 3·7-s + 8-s + 9-s + 10-s + 11-s − 12-s + 2·13-s − 3·14-s − 15-s + 16-s + 3·17-s + 18-s + 20-s + 3·21-s + 22-s − 23-s − 24-s + 25-s + 2·26-s − 27-s − 3·28-s − 6·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 1.13·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s − 0.288·12-s + 0.554·13-s − 0.801·14-s − 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s + 0.223·20-s + 0.654·21-s + 0.213·22-s − 0.208·23-s − 0.204·24-s + 1/5·25-s + 0.392·26-s − 0.192·27-s − 0.566·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(317130\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(2532.29\)
Root analytic conductor: \(50.3219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 317130,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 - T \)
31 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 6 T + p T^{2} \) 1.29.g
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.83268685203111, −12.49689484996071, −12.07252312866656, −11.55414517366186, −11.03449986351504, −10.75791091656365, −10.11624554938207, −9.738779701095615, −9.325852500479132, −8.917885133327993, −8.113754970405870, −7.615177383468151, −7.178443166218348, −6.596126562489479, −6.163863620349530, −5.859733959206633, −5.513611854566253, −4.840653381887238, −4.164985505400771, −3.898443694124467, −3.193021277508631, −2.823555284004483, −2.106905606123931, −1.416111776489565, −0.8545087613350686, 0, 0.8545087613350686, 1.416111776489565, 2.106905606123931, 2.823555284004483, 3.193021277508631, 3.898443694124467, 4.164985505400771, 4.840653381887238, 5.513611854566253, 5.859733959206633, 6.163863620349530, 6.596126562489479, 7.178443166218348, 7.615177383468151, 8.113754970405870, 8.917885133327993, 9.325852500479132, 9.738779701095615, 10.11624554938207, 10.75791091656365, 11.03449986351504, 11.55414517366186, 12.07252312866656, 12.49689484996071, 12.83268685203111

Graph of the $Z$-function along the critical line