Properties

Label 317130.bz
Number of curves $1$
Conductor $317130$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 317130.bz1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 317130.bz do not have complex multiplication.

Modular form 317130.2.a.bz

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} - 3 q^{7} + q^{8} + q^{9} + q^{10} + q^{11} - q^{12} + 2 q^{13} - 3 q^{14} - q^{15} + q^{16} + 3 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 317130.bz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
317130.bz1 317130bz1 \([1, 1, 1, -12228745, -16465141705]\) \(-227876330943752401/6138000000\) \(-5447497593978000000\) \([]\) \(15482880\) \(2.6996\) \(\Gamma_0(N)\)-optimal