Properties

Label 2-309680-1.1-c1-0-30
Degree $2$
Conductor $309680$
Sign $-1$
Analytic cond. $2472.80$
Root an. cond. $49.7273$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·9-s − 4·11-s − 3·13-s − 2·17-s + 6·19-s − 6·23-s + 25-s − 6·29-s + 11·31-s − 4·37-s − 8·41-s − 10·43-s − 3·45-s − 7·47-s − 2·53-s − 4·55-s + 59-s − 7·61-s − 3·65-s − 12·67-s + 4·71-s − 8·73-s + 79-s + 9·81-s − 4·83-s − 2·85-s + ⋯
L(s)  = 1  + 0.447·5-s − 9-s − 1.20·11-s − 0.832·13-s − 0.485·17-s + 1.37·19-s − 1.25·23-s + 1/5·25-s − 1.11·29-s + 1.97·31-s − 0.657·37-s − 1.24·41-s − 1.52·43-s − 0.447·45-s − 1.02·47-s − 0.274·53-s − 0.539·55-s + 0.130·59-s − 0.896·61-s − 0.372·65-s − 1.46·67-s + 0.474·71-s − 0.936·73-s + 0.112·79-s + 81-s − 0.439·83-s − 0.216·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309680\)    =    \(2^{4} \cdot 5 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(2472.80\)
Root analytic conductor: \(49.7273\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 309680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 11 T + p T^{2} \) 1.31.al
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 8 T + p T^{2} \) 1.73.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09217372085248, −12.27701413304773, −11.93509087898481, −11.58398830318281, −11.19071200258012, −10.35633933922691, −10.18686936220126, −9.821167781251722, −9.269549134082073, −8.635032059987019, −8.340028709813198, −7.733461108996666, −7.475781865547689, −6.793828761338598, −6.216576331072814, −5.842137841674478, −5.292663841142954, −4.849677972183401, −4.582231821926766, −3.484041914446190, −3.180405436722431, −2.700443913715434, −2.024097250301014, −1.660839013434089, −0.5545617560096502, 0, 0.5545617560096502, 1.660839013434089, 2.024097250301014, 2.700443913715434, 3.180405436722431, 3.484041914446190, 4.582231821926766, 4.849677972183401, 5.292663841142954, 5.842137841674478, 6.216576331072814, 6.793828761338598, 7.475781865547689, 7.733461108996666, 8.340028709813198, 8.635032059987019, 9.269549134082073, 9.821167781251722, 10.18686936220126, 10.35633933922691, 11.19071200258012, 11.58398830318281, 11.93509087898481, 12.27701413304773, 13.09217372085248

Graph of the $Z$-function along the critical line