Properties

Label 2-546e2-1.1-c1-0-11
Degree $2$
Conductor $298116$
Sign $1$
Analytic cond. $2380.46$
Root an. cond. $48.7900$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·11-s − 4·17-s + 4·19-s − 6·23-s − 25-s − 6·29-s − 31-s − 10·37-s + 4·41-s + 43-s + 10·47-s − 8·53-s − 4·55-s + 2·59-s + 5·61-s + 7·67-s + 10·71-s − 7·73-s + 17·79-s − 12·83-s + 8·85-s + 16·89-s − 8·95-s + 13·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.603·11-s − 0.970·17-s + 0.917·19-s − 1.25·23-s − 1/5·25-s − 1.11·29-s − 0.179·31-s − 1.64·37-s + 0.624·41-s + 0.152·43-s + 1.45·47-s − 1.09·53-s − 0.539·55-s + 0.260·59-s + 0.640·61-s + 0.855·67-s + 1.18·71-s − 0.819·73-s + 1.91·79-s − 1.31·83-s + 0.867·85-s + 1.69·89-s − 0.820·95-s + 1.31·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(298116\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2380.46\)
Root analytic conductor: \(48.7900\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 298116,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.007781421\)
\(L(\frac12)\) \(\approx\) \(1.007781421\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 17 T + p T^{2} \) 1.79.ar
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.53527389464725, −12.13229818831041, −11.83970974557067, −11.39650930819514, −10.82176322093146, −10.65897750129440, −9.729522193921788, −9.572905309521744, −8.962757905471037, −8.568643838635731, −7.944065861064497, −7.643575605225155, −7.135804527943666, −6.661964214981830, −6.157409419884871, −5.524280350265111, −5.150573819429685, −4.412846170382956, −3.893287865000102, −3.731384633530226, −3.067426780031260, −2.211459312400742, −1.883978454232703, −1.030875675265470, −0.2945796829092631, 0.2945796829092631, 1.030875675265470, 1.883978454232703, 2.211459312400742, 3.067426780031260, 3.731384633530226, 3.893287865000102, 4.412846170382956, 5.150573819429685, 5.524280350265111, 6.157409419884871, 6.661964214981830, 7.135804527943666, 7.643575605225155, 7.944065861064497, 8.568643838635731, 8.962757905471037, 9.572905309521744, 9.729522193921788, 10.65897750129440, 10.82176322093146, 11.39650930819514, 11.83970974557067, 12.13229818831041, 12.53527389464725

Graph of the $Z$-function along the critical line