Properties

Label 2-293046-1.1-c1-0-1
Degree $2$
Conductor $293046$
Sign $1$
Analytic cond. $2339.98$
Root an. cond. $48.3733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 2·5-s + 6-s − 2·7-s − 8-s + 9-s + 2·10-s − 4·11-s − 12-s + 2·14-s + 2·15-s + 16-s − 18-s − 2·19-s − 2·20-s + 2·21-s + 4·22-s − 4·23-s + 24-s − 25-s − 27-s − 2·28-s − 6·29-s − 2·30-s + 6·31-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s − 1.20·11-s − 0.288·12-s + 0.534·14-s + 0.516·15-s + 1/4·16-s − 0.235·18-s − 0.458·19-s − 0.447·20-s + 0.436·21-s + 0.852·22-s − 0.834·23-s + 0.204·24-s − 1/5·25-s − 0.192·27-s − 0.377·28-s − 1.11·29-s − 0.365·30-s + 1.07·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(293046\)    =    \(2 \cdot 3 \cdot 13^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2339.98\)
Root analytic conductor: \(48.3733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 293046,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1148802526\)
\(L(\frac12)\) \(\approx\) \(0.1148802526\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
13 \( 1 \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57791584115500, −12.10570761111870, −11.83257038634605, −11.26238008771126, −10.84327314625404, −10.36644477961000, −10.09038825063499, −9.538745300277508, −9.081984734325018, −8.406364278808666, −8.025038513053963, −7.698133909750771, −7.136853233195415, −6.703353545032351, −6.200964744720692, −5.606539054436246, −5.296105390335106, −4.501550326825264, −3.999120678524046, −3.541950962216440, −2.855707596052941, −2.341073300440730, −1.706958204073157, −0.8030800876029520, −0.1392619480097579, 0.1392619480097579, 0.8030800876029520, 1.706958204073157, 2.341073300440730, 2.855707596052941, 3.541950962216440, 3.999120678524046, 4.501550326825264, 5.296105390335106, 5.606539054436246, 6.200964744720692, 6.703353545032351, 7.136853233195415, 7.698133909750771, 8.025038513053963, 8.406364278808666, 9.081984734325018, 9.538745300277508, 10.09038825063499, 10.36644477961000, 10.84327314625404, 11.26238008771126, 11.83257038634605, 12.10570761111870, 12.57791584115500

Graph of the $Z$-function along the critical line