Properties

Label 2-293046-1.1-c1-0-68
Degree $2$
Conductor $293046$
Sign $-1$
Analytic cond. $2339.98$
Root an. cond. $48.3733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 4·5-s − 6-s + 8-s + 9-s + 4·10-s + 2·11-s − 12-s − 4·15-s + 16-s + 18-s − 2·19-s + 4·20-s + 2·22-s − 24-s + 11·25-s − 27-s + 2·29-s − 4·30-s + 8·31-s + 32-s − 2·33-s + 36-s − 10·37-s − 2·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.78·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 1.26·10-s + 0.603·11-s − 0.288·12-s − 1.03·15-s + 1/4·16-s + 0.235·18-s − 0.458·19-s + 0.894·20-s + 0.426·22-s − 0.204·24-s + 11/5·25-s − 0.192·27-s + 0.371·29-s − 0.730·30-s + 1.43·31-s + 0.176·32-s − 0.348·33-s + 1/6·36-s − 1.64·37-s − 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(293046\)    =    \(2 \cdot 3 \cdot 13^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2339.98\)
Root analytic conductor: \(48.3733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 293046,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
13 \( 1 \)
17 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94829089891356, −12.43582204993835, −12.17481408068063, −11.70479032472881, −11.05154708595377, −10.62860820331711, −10.19557838952519, −9.962000282937496, −9.300609719333538, −8.893730185818114, −8.402326593445977, −7.720610402183581, −6.953677110488269, −6.642821676155321, −6.333581289038991, −5.851658479475172, −5.359605519079518, −4.952088728743191, −4.512112729370128, −3.832492385329740, −3.211672514759301, −2.572802390345100, −2.118772789411366, −1.422433895539580, −1.151273875333491, 0, 1.151273875333491, 1.422433895539580, 2.118772789411366, 2.572802390345100, 3.211672514759301, 3.832492385329740, 4.512112729370128, 4.952088728743191, 5.359605519079518, 5.851658479475172, 6.333581289038991, 6.642821676155321, 6.953677110488269, 7.720610402183581, 8.402326593445977, 8.893730185818114, 9.300609719333538, 9.962000282937496, 10.19557838952519, 10.62860820331711, 11.05154708595377, 11.70479032472881, 12.17481408068063, 12.43582204993835, 12.94829089891356

Graph of the $Z$-function along the critical line