Properties

Label 2-286650-1.1-c1-0-267
Degree $2$
Conductor $286650$
Sign $-1$
Analytic cond. $2288.91$
Root an. cond. $47.8425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 5·11-s − 13-s + 16-s + 3·17-s + 5·19-s + 5·22-s + 9·23-s + 26-s + 29-s − 2·31-s − 32-s − 3·34-s − 3·37-s − 5·38-s + 12·41-s − 7·43-s − 5·44-s − 9·46-s − 4·47-s − 52-s − 10·53-s − 58-s − 14·59-s − 11·61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 1.50·11-s − 0.277·13-s + 1/4·16-s + 0.727·17-s + 1.14·19-s + 1.06·22-s + 1.87·23-s + 0.196·26-s + 0.185·29-s − 0.359·31-s − 0.176·32-s − 0.514·34-s − 0.493·37-s − 0.811·38-s + 1.87·41-s − 1.06·43-s − 0.753·44-s − 1.32·46-s − 0.583·47-s − 0.138·52-s − 1.37·53-s − 0.131·58-s − 1.82·59-s − 1.40·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2288.91\)
Root analytic conductor: \(47.8425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 286650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75020237938623, −12.53124091908648, −12.12754869490660, −11.24258297772045, −11.17688663712806, −10.64590598669620, −10.21548806509863, −9.631394060379460, −9.361524591846732, −8.896734223079030, −8.202571420324750, −7.780859148055820, −7.542159869518496, −7.058534759622149, −6.439397759752817, −5.883955910542092, −5.301152201976362, −4.973387245905121, −4.525133238504550, −3.409117039596949, −3.160258837474673, −2.733707473451688, −2.004064398376170, −1.329024556356529, −0.7429540225462538, 0, 0.7429540225462538, 1.329024556356529, 2.004064398376170, 2.733707473451688, 3.160258837474673, 3.409117039596949, 4.525133238504550, 4.973387245905121, 5.301152201976362, 5.883955910542092, 6.439397759752817, 7.058534759622149, 7.542159869518496, 7.780859148055820, 8.202571420324750, 8.896734223079030, 9.361524591846732, 9.631394060379460, 10.21548806509863, 10.64590598669620, 11.17688663712806, 11.24258297772045, 12.12754869490660, 12.53124091908648, 12.75020237938623

Graph of the $Z$-function along the critical line