Properties

Label 2-283140-1.1-c1-0-24
Degree $2$
Conductor $283140$
Sign $-1$
Analytic cond. $2260.88$
Root an. cond. $47.5487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 13-s − 4·17-s − 4·19-s + 4·23-s + 25-s + 4·29-s + 8·31-s − 6·37-s + 10·41-s + 12·43-s − 2·47-s − 7·49-s − 12·53-s − 2·59-s + 14·61-s + 65-s + 4·67-s − 6·71-s − 10·73-s + 8·79-s − 6·83-s + 4·85-s + 2·89-s + 4·95-s + 10·97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.277·13-s − 0.970·17-s − 0.917·19-s + 0.834·23-s + 1/5·25-s + 0.742·29-s + 1.43·31-s − 0.986·37-s + 1.56·41-s + 1.82·43-s − 0.291·47-s − 49-s − 1.64·53-s − 0.260·59-s + 1.79·61-s + 0.124·65-s + 0.488·67-s − 0.712·71-s − 1.17·73-s + 0.900·79-s − 0.658·83-s + 0.433·85-s + 0.211·89-s + 0.410·95-s + 1.01·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(283140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2260.88\)
Root analytic conductor: \(47.5487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 283140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95612714936509, −12.52991278124256, −12.11344274574571, −11.52025687058796, −11.06916361178562, −10.86245559321900, −10.16939949743268, −9.857542567341291, −9.123887338376683, −8.805977175027860, −8.421890126705719, −7.775098770208028, −7.453470087015547, −6.821350453128880, −6.340056494446624, −6.108379943628913, −5.213371193021424, −4.740502010212297, −4.413546367698255, −3.869604124685707, −3.196439544528286, −2.593581189058565, −2.254422976281986, −1.364827678982380, −0.7340326807575133, 0, 0.7340326807575133, 1.364827678982380, 2.254422976281986, 2.593581189058565, 3.196439544528286, 3.869604124685707, 4.413546367698255, 4.740502010212297, 5.213371193021424, 6.108379943628913, 6.340056494446624, 6.821350453128880, 7.453470087015547, 7.775098770208028, 8.421890126705719, 8.805977175027860, 9.123887338376683, 9.857542567341291, 10.16939949743268, 10.86245559321900, 11.06916361178562, 11.52025687058796, 12.11344274574571, 12.52991278124256, 12.95612714936509

Graph of the $Z$-function along the critical line