Properties

Label 2-165e2-1.1-c1-0-2
Degree $2$
Conductor $27225$
Sign $1$
Analytic cond. $217.392$
Root an. cond. $14.7442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 7-s − 3·8-s − 2·13-s + 14-s − 16-s − 3·17-s − 3·19-s + 23-s − 2·26-s − 28-s − 6·29-s + 2·31-s + 5·32-s − 3·34-s + 3·37-s − 3·38-s − 3·41-s − 12·43-s + 46-s − 47-s − 6·49-s + 2·52-s − 6·53-s − 3·56-s − 6·58-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.377·7-s − 1.06·8-s − 0.554·13-s + 0.267·14-s − 1/4·16-s − 0.727·17-s − 0.688·19-s + 0.208·23-s − 0.392·26-s − 0.188·28-s − 1.11·29-s + 0.359·31-s + 0.883·32-s − 0.514·34-s + 0.493·37-s − 0.486·38-s − 0.468·41-s − 1.82·43-s + 0.147·46-s − 0.145·47-s − 6/7·49-s + 0.277·52-s − 0.824·53-s − 0.400·56-s − 0.787·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27225\)    =    \(3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(217.392\)
Root analytic conductor: \(14.7442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.294128448\)
\(L(\frac12)\) \(\approx\) \(1.294128448\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.02609360723604, −14.82541361338529, −14.14653634879681, −13.66410697760436, −13.09370958703501, −12.77647699500784, −12.16513527828036, −11.51691549524766, −11.16671474978618, −10.37942205532277, −9.765736284290644, −9.277666156920061, −8.661873514081188, −8.160850574611506, −7.546244446787937, −6.670987729137717, −6.302651845892963, −5.515110679958429, −4.829027393226307, −4.631243170302281, −3.768412030305528, −3.227167142363433, −2.363208773419578, −1.645967378560796, −0.3856026146315220, 0.3856026146315220, 1.645967378560796, 2.363208773419578, 3.227167142363433, 3.768412030305528, 4.631243170302281, 4.829027393226307, 5.515110679958429, 6.302651845892963, 6.670987729137717, 7.546244446787937, 8.160850574611506, 8.661873514081188, 9.277666156920061, 9.765736284290644, 10.37942205532277, 11.16671474978618, 11.51691549524766, 12.16513527828036, 12.77647699500784, 13.09370958703501, 13.66410697760436, 14.14653634879681, 14.82541361338529, 15.02609360723604

Graph of the $Z$-function along the critical line