Properties

Label 2-165e2-1.1-c1-0-1
Degree $2$
Conductor $27225$
Sign $1$
Analytic cond. $217.392$
Root an. cond. $14.7442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4·16-s − 9·23-s − 5·31-s − 7·37-s − 12·47-s − 7·49-s + 6·53-s + 15·59-s − 8·64-s − 13·67-s + 3·71-s + 9·89-s + 18·92-s − 17·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 4-s + 16-s − 1.87·23-s − 0.898·31-s − 1.15·37-s − 1.75·47-s − 49-s + 0.824·53-s + 1.95·59-s − 64-s − 1.58·67-s + 0.356·71-s + 0.953·89-s + 1.87·92-s − 1.72·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27225\)    =    \(3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(217.392\)
Root analytic conductor: \(14.7442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7477359857\)
\(L(\frac12)\) \(\approx\) \(0.7477359857\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 15 T + p T^{2} \) 1.59.ap
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.16863713523087, −14.50930387685395, −14.31404645708268, −13.60077379396845, −13.21887796171982, −12.65960018173310, −12.07163879590727, −11.63419297861527, −10.87271808682258, −10.19818999519871, −9.863152858559874, −9.306577194639919, −8.565187343230728, −8.277777762682828, −7.617528098615488, −6.949153902280101, −6.183610589076477, −5.613700607862709, −5.042841785202149, −4.382740074763934, −3.744852216726785, −3.270994249527195, −2.170032500137220, −1.483700781994962, −0.3441940286052214, 0.3441940286052214, 1.483700781994962, 2.170032500137220, 3.270994249527195, 3.744852216726785, 4.382740074763934, 5.042841785202149, 5.613700607862709, 6.183610589076477, 6.949153902280101, 7.617528098615488, 8.277777762682828, 8.565187343230728, 9.306577194639919, 9.863152858559874, 10.19818999519871, 10.87271808682258, 11.63419297861527, 12.07163879590727, 12.65960018173310, 13.21887796171982, 13.60077379396845, 14.31404645708268, 14.50930387685395, 15.16863713523087

Graph of the $Z$-function along the critical line