Properties

Label 2-27200-1.1-c1-0-75
Degree $2$
Conductor $27200$
Sign $1$
Analytic cond. $217.193$
Root an. cond. $14.7374$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·7-s − 2·9-s + 2·11-s − 5·13-s + 17-s − 7·19-s − 4·21-s − 8·23-s − 5·27-s − 5·29-s − 3·31-s + 2·33-s + 4·37-s − 5·39-s − 4·41-s + 3·47-s + 9·49-s + 51-s − 7·53-s − 7·57-s − 3·59-s − 11·61-s + 8·63-s + 10·67-s − 8·69-s + 71-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.51·7-s − 2/3·9-s + 0.603·11-s − 1.38·13-s + 0.242·17-s − 1.60·19-s − 0.872·21-s − 1.66·23-s − 0.962·27-s − 0.928·29-s − 0.538·31-s + 0.348·33-s + 0.657·37-s − 0.800·39-s − 0.624·41-s + 0.437·47-s + 9/7·49-s + 0.140·51-s − 0.961·53-s − 0.927·57-s − 0.390·59-s − 1.40·61-s + 1.00·63-s + 1.22·67-s − 0.963·69-s + 0.118·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27200\)    =    \(2^{6} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(217.193\)
Root analytic conductor: \(14.7374\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 27200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.67344560706192, −15.17007637178085, −14.74461792346743, −14.14864586421441, −13.85039065883447, −12.89981438324642, −12.79124359763769, −12.11477128039735, −11.65312550814975, −10.86106051516403, −10.23570884386607, −9.682183942643890, −9.345965715347775, −8.800718890937527, −8.088131832664943, −7.575538310292148, −6.881751508646886, −6.222775025358365, −5.933355871780180, −5.065493115453207, −4.100191517562934, −3.775690677630288, −2.938337426830058, −2.429112637788205, −1.729302770763276, 0, 0, 1.729302770763276, 2.429112637788205, 2.938337426830058, 3.775690677630288, 4.100191517562934, 5.065493115453207, 5.933355871780180, 6.222775025358365, 6.881751508646886, 7.575538310292148, 8.088131832664943, 8.800718890937527, 9.345965715347775, 9.682183942643890, 10.23570884386607, 10.86106051516403, 11.65312550814975, 12.11477128039735, 12.79124359763769, 12.89981438324642, 13.85039065883447, 14.14864586421441, 14.74461792346743, 15.17007637178085, 15.67344560706192

Graph of the $Z$-function along the critical line