Properties

Label 2-266560-1.1-c1-0-172
Degree $2$
Conductor $266560$
Sign $1$
Analytic cond. $2128.49$
Root an. cond. $46.1355$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 2·9-s − 2·11-s − 4·13-s + 15-s − 17-s − 6·19-s − 23-s + 25-s + 5·27-s − 29-s + 6·31-s + 2·33-s − 2·37-s + 4·39-s − 5·41-s + 9·43-s + 2·45-s − 12·47-s + 51-s + 4·53-s + 2·55-s + 6·57-s − 8·59-s + 15·61-s + 4·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 2/3·9-s − 0.603·11-s − 1.10·13-s + 0.258·15-s − 0.242·17-s − 1.37·19-s − 0.208·23-s + 1/5·25-s + 0.962·27-s − 0.185·29-s + 1.07·31-s + 0.348·33-s − 0.328·37-s + 0.640·39-s − 0.780·41-s + 1.37·43-s + 0.298·45-s − 1.75·47-s + 0.140·51-s + 0.549·53-s + 0.269·55-s + 0.794·57-s − 1.04·59-s + 1.92·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 266560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(266560\)    =    \(2^{6} \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2128.49\)
Root analytic conductor: \(46.1355\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 266560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 15 T + p T^{2} \) 1.61.ap
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.01975799915119, −12.76014087158918, −12.31671047396729, −11.81573730204921, −11.44938821592912, −11.03890464648763, −10.48195126809944, −10.15241120096530, −9.706563593190647, −8.875686547023970, −8.701491907295702, −7.986793408383220, −7.808759797918937, −7.067283777971914, −6.571954574048608, −6.266561966434071, −5.546784832102919, −5.153791115124813, −4.661322523034308, −4.224260665302853, −3.558632097059873, −2.816377269908763, −2.497957759310870, −1.863292080687845, −0.9352543326301144, 0, 0, 0.9352543326301144, 1.863292080687845, 2.497957759310870, 2.816377269908763, 3.558632097059873, 4.224260665302853, 4.661322523034308, 5.153791115124813, 5.546784832102919, 6.266561966434071, 6.571954574048608, 7.067283777971914, 7.808759797918937, 7.986793408383220, 8.701491907295702, 8.875686547023970, 9.706563593190647, 10.15241120096530, 10.48195126809944, 11.03890464648763, 11.44938821592912, 11.81573730204921, 12.31671047396729, 12.76014087158918, 13.01975799915119

Graph of the $Z$-function along the critical line