Properties

Label 2-266175-1.1-c1-0-89
Degree $2$
Conductor $266175$
Sign $-1$
Analytic cond. $2125.41$
Root an. cond. $46.1022$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 7-s − 3·8-s + 6·11-s − 14-s − 16-s − 2·17-s + 6·22-s + 28-s + 2·29-s − 8·31-s + 5·32-s − 2·34-s + 2·37-s − 4·41-s + 4·43-s − 6·44-s + 12·47-s + 49-s + 3·56-s + 2·58-s + 4·59-s − 14·61-s − 8·62-s + 7·64-s − 4·67-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.377·7-s − 1.06·8-s + 1.80·11-s − 0.267·14-s − 1/4·16-s − 0.485·17-s + 1.27·22-s + 0.188·28-s + 0.371·29-s − 1.43·31-s + 0.883·32-s − 0.342·34-s + 0.328·37-s − 0.624·41-s + 0.609·43-s − 0.904·44-s + 1.75·47-s + 1/7·49-s + 0.400·56-s + 0.262·58-s + 0.520·59-s − 1.79·61-s − 1.01·62-s + 7/8·64-s − 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(266175\)    =    \(3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2125.41\)
Root analytic conductor: \(46.1022\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 266175,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14426794718797, −12.44294495996020, −12.16098049461135, −11.97512787102036, −11.14750312112172, −10.95001122688731, −10.18957404989268, −9.701921566985259, −9.173698976757465, −8.937997311600507, −8.665727810519230, −7.785225894290878, −7.336218792047464, −6.708018228562738, −6.326294970953983, −5.921523307724670, −5.380838346983880, −4.784456818753317, −4.217236910568485, −3.916490766941329, −3.460913949349963, −2.857052232561470, −2.173957887020701, −1.433293330327803, −0.7921438649146732, 0, 0.7921438649146732, 1.433293330327803, 2.173957887020701, 2.857052232561470, 3.460913949349963, 3.916490766941329, 4.217236910568485, 4.784456818753317, 5.380838346983880, 5.921523307724670, 6.326294970953983, 6.708018228562738, 7.336218792047464, 7.785225894290878, 8.665727810519230, 8.937997311600507, 9.173698976757465, 9.701921566985259, 10.18957404989268, 10.95001122688731, 11.14750312112172, 11.97512787102036, 12.16098049461135, 12.44294495996020, 13.14426794718797

Graph of the $Z$-function along the critical line