| L(s)  = 1 | + 2-s     − 4-s       − 7-s   − 3·8-s       + 6·11-s       − 14-s     − 16-s   − 2·17-s           + 6·22-s             + 28-s   + 2·29-s     − 8·31-s   + 5·32-s     − 2·34-s       + 2·37-s         − 4·41-s     + 4·43-s   − 6·44-s       + 12·47-s     + 49-s               + 3·56-s     + 2·58-s   + 4·59-s     − 14·61-s   − 8·62-s     + 7·64-s       − 4·67-s  + ⋯ | 
| L(s)  = 1 | + 0.707·2-s     − 1/2·4-s       − 0.377·7-s   − 1.06·8-s       + 1.80·11-s       − 0.267·14-s     − 1/4·16-s   − 0.485·17-s           + 1.27·22-s             + 0.188·28-s   + 0.371·29-s     − 1.43·31-s   + 0.883·32-s     − 0.342·34-s       + 0.328·37-s         − 0.624·41-s     + 0.609·43-s   − 0.904·44-s       + 1.75·47-s     + 1/7·49-s               + 0.400·56-s     + 0.262·58-s   + 0.520·59-s     − 1.79·61-s   − 1.01·62-s     + 7/8·64-s       − 0.488·67-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 7 | \( 1 + T \) |  | 
|  | 13 | \( 1 \) |  | 
| good | 2 | \( 1 - T + p T^{2} \) | 1.2.ab | 
|  | 11 | \( 1 - 6 T + p T^{2} \) | 1.11.ag | 
|  | 17 | \( 1 + 2 T + p T^{2} \) | 1.17.c | 
|  | 19 | \( 1 + p T^{2} \) | 1.19.a | 
|  | 23 | \( 1 + p T^{2} \) | 1.23.a | 
|  | 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac | 
|  | 31 | \( 1 + 8 T + p T^{2} \) | 1.31.i | 
|  | 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac | 
|  | 41 | \( 1 + 4 T + p T^{2} \) | 1.41.e | 
|  | 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae | 
|  | 47 | \( 1 - 12 T + p T^{2} \) | 1.47.am | 
|  | 53 | \( 1 + p T^{2} \) | 1.53.a | 
|  | 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae | 
|  | 61 | \( 1 + 14 T + p T^{2} \) | 1.61.o | 
|  | 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e | 
|  | 71 | \( 1 + 2 T + p T^{2} \) | 1.71.c | 
|  | 73 | \( 1 + 6 T + p T^{2} \) | 1.73.g | 
|  | 79 | \( 1 - 16 T + p T^{2} \) | 1.79.aq | 
|  | 83 | \( 1 - 4 T + p T^{2} \) | 1.83.ae | 
|  | 89 | \( 1 + p T^{2} \) | 1.89.a | 
|  | 97 | \( 1 - 10 T + p T^{2} \) | 1.97.ak | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.14426794718797, −12.44294495996020, −12.16098049461135, −11.97512787102036, −11.14750312112172, −10.95001122688731, −10.18957404989268, −9.701921566985259, −9.173698976757465, −8.937997311600507, −8.665727810519230, −7.785225894290878, −7.336218792047464, −6.708018228562738, −6.326294970953983, −5.921523307724670, −5.380838346983880, −4.784456818753317, −4.217236910568485, −3.916490766941329, −3.460913949349963, −2.857052232561470, −2.173957887020701, −1.433293330327803, −0.7921438649146732, 0, 
0.7921438649146732, 1.433293330327803, 2.173957887020701, 2.857052232561470, 3.460913949349963, 3.916490766941329, 4.217236910568485, 4.784456818753317, 5.380838346983880, 5.921523307724670, 6.326294970953983, 6.708018228562738, 7.336218792047464, 7.785225894290878, 8.665727810519230, 8.937997311600507, 9.173698976757465, 9.701921566985259, 10.18957404989268, 10.95001122688731, 11.14750312112172, 11.97512787102036, 12.16098049461135, 12.44294495996020, 13.14426794718797
