Properties

Label 2-265200-1.1-c1-0-42
Degree $2$
Conductor $265200$
Sign $1$
Analytic cond. $2117.63$
Root an. cond. $46.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 4·11-s − 13-s − 17-s + 4·19-s − 27-s − 2·29-s + 8·31-s + 4·33-s + 2·37-s + 39-s + 2·41-s − 4·43-s + 8·47-s − 7·49-s + 51-s + 10·53-s − 4·57-s − 4·59-s + 14·61-s − 4·67-s + 14·73-s + 8·79-s + 81-s − 4·83-s + 2·87-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.20·11-s − 0.277·13-s − 0.242·17-s + 0.917·19-s − 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.696·33-s + 0.328·37-s + 0.160·39-s + 0.312·41-s − 0.609·43-s + 1.16·47-s − 49-s + 0.140·51-s + 1.37·53-s − 0.529·57-s − 0.520·59-s + 1.79·61-s − 0.488·67-s + 1.63·73-s + 0.900·79-s + 1/9·81-s − 0.439·83-s + 0.214·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 265200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 265200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(265200\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(2117.63\)
Root analytic conductor: \(46.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 265200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.772446743\)
\(L(\frac12)\) \(\approx\) \(1.772446743\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81910077435280, −12.25832176400049, −11.87597307604067, −11.47184366061709, −10.91420245922911, −10.54750970511065, −10.06547552282149, −9.646274265410074, −9.246354991496237, −8.446801543061947, −8.135931614478030, −7.614381908294316, −7.161453142797130, −6.648931581831634, −6.157248005391712, −5.448646123547859, −5.290998928521412, −4.728024501830431, −4.148911599950890, −3.585722937528873, −2.810079509177241, −2.505345420546098, −1.775769462760920, −0.9414557956201852, −0.4485927043714717, 0.4485927043714717, 0.9414557956201852, 1.775769462760920, 2.505345420546098, 2.810079509177241, 3.585722937528873, 4.148911599950890, 4.728024501830431, 5.290998928521412, 5.448646123547859, 6.157248005391712, 6.648931581831634, 7.161453142797130, 7.614381908294316, 8.135931614478030, 8.446801543061947, 9.246354991496237, 9.646274265410074, 10.06547552282149, 10.54750970511065, 10.91420245922911, 11.47184366061709, 11.87597307604067, 12.25832176400049, 12.81910077435280

Graph of the $Z$-function along the critical line