| L(s)  = 1 | − 3-s             + 9-s     − 4·11-s     − 13-s         − 17-s     + 4·19-s                 − 27-s     − 2·29-s     + 8·31-s     + 4·33-s         + 2·37-s     + 39-s     + 2·41-s     − 4·43-s         + 8·47-s     − 7·49-s     + 51-s     + 10·53-s         − 4·57-s     − 4·59-s     + 14·61-s             − 4·67-s             + 14·73-s             + 8·79-s     + 81-s     − 4·83-s         + 2·87-s  + ⋯ | 
| L(s)  = 1 | − 0.577·3-s             + 1/3·9-s     − 1.20·11-s     − 0.277·13-s         − 0.242·17-s     + 0.917·19-s                 − 0.192·27-s     − 0.371·29-s     + 1.43·31-s     + 0.696·33-s         + 0.328·37-s     + 0.160·39-s     + 0.312·41-s     − 0.609·43-s         + 1.16·47-s     − 49-s     + 0.140·51-s     + 1.37·53-s         − 0.529·57-s     − 0.520·59-s     + 1.79·61-s             − 0.488·67-s             + 1.63·73-s             + 0.900·79-s     + 1/9·81-s     − 0.439·83-s         + 0.214·87-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 265200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 265200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(1.772446743\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.772446743\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 + T \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 13 | \( 1 + T \) |  | 
|  | 17 | \( 1 + T \) |  | 
| good | 7 | \( 1 + p T^{2} \) | 1.7.a | 
|  | 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e | 
|  | 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae | 
|  | 23 | \( 1 + p T^{2} \) | 1.23.a | 
|  | 29 | \( 1 + 2 T + p T^{2} \) | 1.29.c | 
|  | 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai | 
|  | 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac | 
|  | 41 | \( 1 - 2 T + p T^{2} \) | 1.41.ac | 
|  | 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | 
|  | 47 | \( 1 - 8 T + p T^{2} \) | 1.47.ai | 
|  | 53 | \( 1 - 10 T + p T^{2} \) | 1.53.ak | 
|  | 59 | \( 1 + 4 T + p T^{2} \) | 1.59.e | 
|  | 61 | \( 1 - 14 T + p T^{2} \) | 1.61.ao | 
|  | 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e | 
|  | 71 | \( 1 + p T^{2} \) | 1.71.a | 
|  | 73 | \( 1 - 14 T + p T^{2} \) | 1.73.ao | 
|  | 79 | \( 1 - 8 T + p T^{2} \) | 1.79.ai | 
|  | 83 | \( 1 + 4 T + p T^{2} \) | 1.83.e | 
|  | 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g | 
|  | 97 | \( 1 - 6 T + p T^{2} \) | 1.97.ag | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.81910077435280, −12.25832176400049, −11.87597307604067, −11.47184366061709, −10.91420245922911, −10.54750970511065, −10.06547552282149, −9.646274265410074, −9.246354991496237, −8.446801543061947, −8.135931614478030, −7.614381908294316, −7.161453142797130, −6.648931581831634, −6.157248005391712, −5.448646123547859, −5.290998928521412, −4.728024501830431, −4.148911599950890, −3.585722937528873, −2.810079509177241, −2.505345420546098, −1.775769462760920, −0.9414557956201852, −0.4485927043714717, 
0.4485927043714717, 0.9414557956201852, 1.775769462760920, 2.505345420546098, 2.810079509177241, 3.585722937528873, 4.148911599950890, 4.728024501830431, 5.290998928521412, 5.448646123547859, 6.157248005391712, 6.648931581831634, 7.161453142797130, 7.614381908294316, 8.135931614478030, 8.446801543061947, 9.246354991496237, 9.646274265410074, 10.06547552282149, 10.54750970511065, 10.91420245922911, 11.47184366061709, 11.87597307604067, 12.25832176400049, 12.81910077435280
