Properties

Label 2-262848-1.1-c1-0-77
Degree $2$
Conductor $262848$
Sign $1$
Analytic cond. $2098.85$
Root an. cond. $45.8132$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·5-s + 3·7-s + 9-s − 5·11-s + 3·13-s − 4·15-s − 3·17-s − 7·19-s + 3·21-s − 9·23-s + 11·25-s + 27-s + 2·31-s − 5·33-s − 12·35-s + 3·39-s + 6·41-s + 4·43-s − 4·45-s − 10·47-s + 2·49-s − 3·51-s − 3·53-s + 20·55-s − 7·57-s − 4·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.78·5-s + 1.13·7-s + 1/3·9-s − 1.50·11-s + 0.832·13-s − 1.03·15-s − 0.727·17-s − 1.60·19-s + 0.654·21-s − 1.87·23-s + 11/5·25-s + 0.192·27-s + 0.359·31-s − 0.870·33-s − 2.02·35-s + 0.480·39-s + 0.937·41-s + 0.609·43-s − 0.596·45-s − 1.45·47-s + 2/7·49-s − 0.420·51-s − 0.412·53-s + 2.69·55-s − 0.927·57-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 262848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 262848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(262848\)    =    \(2^{6} \cdot 3 \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(2098.85\)
Root analytic conductor: \(45.8132\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 262848,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
37 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15589963636937, −12.80391488253648, −12.33592069070793, −11.91444873929450, −11.24187341307260, −11.04071601234196, −10.69586351618569, −10.20222331808806, −9.521710220898103, −8.721479213668631, −8.470477411176336, −8.074272794688674, −7.871909938279556, −7.461212337325038, −6.766328654319077, −6.217663563438605, −5.647474323767021, −4.804256291520023, −4.516401358651552, −4.148618656670013, −3.661241063303117, −2.986799554930917, −2.396331888949074, −1.898353567745416, −1.144401625014415, 0, 0, 1.144401625014415, 1.898353567745416, 2.396331888949074, 2.986799554930917, 3.661241063303117, 4.148618656670013, 4.516401358651552, 4.804256291520023, 5.647474323767021, 6.217663563438605, 6.766328654319077, 7.461212337325038, 7.871909938279556, 8.074272794688674, 8.470477411176336, 8.721479213668631, 9.521710220898103, 10.20222331808806, 10.69586351618569, 11.04071601234196, 11.24187341307260, 11.91444873929450, 12.33592069070793, 12.80391488253648, 13.15589963636937

Graph of the $Z$-function along the critical line