Properties

Label 2-262080-1.1-c1-0-180
Degree $2$
Conductor $262080$
Sign $-1$
Analytic cond. $2092.71$
Root an. cond. $45.7462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 13-s + 2·19-s − 6·23-s + 25-s + 6·29-s − 8·31-s + 35-s + 10·37-s + 12·41-s − 4·43-s + 49-s − 12·53-s − 6·59-s − 2·61-s + 65-s − 4·67-s − 6·71-s − 10·73-s + 16·79-s + 12·89-s + 91-s − 2·95-s + 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 0.277·13-s + 0.458·19-s − 1.25·23-s + 1/5·25-s + 1.11·29-s − 1.43·31-s + 0.169·35-s + 1.64·37-s + 1.87·41-s − 0.609·43-s + 1/7·49-s − 1.64·53-s − 0.781·59-s − 0.256·61-s + 0.124·65-s − 0.488·67-s − 0.712·71-s − 1.17·73-s + 1.80·79-s + 1.27·89-s + 0.104·91-s − 0.205·95-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 262080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 262080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(262080\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(2092.71\)
Root analytic conductor: \(45.7462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 262080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92656397411023, −12.64376166485072, −12.02026508938499, −11.78572966781661, −11.23017878875895, −10.66797993368771, −10.39165433376478, −9.712054749812079, −9.266085203204213, −9.090705676030575, −8.200072106848781, −7.805959764293332, −7.612371194424555, −6.914981992812529, −6.346902976951554, −5.991425749491484, −5.472025077845074, −4.727539951839956, −4.387546767233298, −3.839056168796908, −3.218168905735165, −2.777187865877610, −2.128934643084011, −1.439215712718246, −0.6895565655801021, 0, 0.6895565655801021, 1.439215712718246, 2.128934643084011, 2.777187865877610, 3.218168905735165, 3.839056168796908, 4.387546767233298, 4.727539951839956, 5.472025077845074, 5.991425749491484, 6.346902976951554, 6.914981992812529, 7.612371194424555, 7.805959764293332, 8.200072106848781, 9.090705676030575, 9.266085203204213, 9.712054749812079, 10.39165433376478, 10.66797993368771, 11.23017878875895, 11.78572966781661, 12.02026508938499, 12.64376166485072, 12.92656397411023

Graph of the $Z$-function along the critical line