Properties

Label 2-257754-1.1-c1-0-43
Degree $2$
Conductor $257754$
Sign $-1$
Analytic cond. $2058.17$
Root an. cond. $45.3671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s + 7-s − 8-s + 9-s − 12-s − 14-s + 16-s − 17-s − 18-s − 21-s − 6·23-s + 24-s − 5·25-s − 27-s + 28-s + 6·29-s + 6·31-s − 32-s + 34-s + 36-s + 4·37-s + 10·41-s + 42-s + 4·43-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s − 0.267·14-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.218·21-s − 1.25·23-s + 0.204·24-s − 25-s − 0.192·27-s + 0.188·28-s + 1.11·29-s + 1.07·31-s − 0.176·32-s + 0.171·34-s + 1/6·36-s + 0.657·37-s + 1.56·41-s + 0.154·42-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 257754 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 257754 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(257754\)    =    \(2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2058.17\)
Root analytic conductor: \(45.3671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 257754,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 + T \)
19 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + p T^{2} \) 1.13.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06385796071402, −12.33709740289129, −11.95913915685931, −11.75403892018648, −11.12371117122447, −10.78144345705871, −10.21405918934015, −9.894406702440718, −9.440180515475772, −8.878950245323618, −8.288113916018521, −7.958324690118411, −7.510844396810060, −7.000062563010797, −6.241476382314797, −6.123535742261219, −5.610350892338309, −4.797452405995836, −4.443008488384649, −3.918566875015730, −3.181828420259292, −2.437526439541403, −2.084748482744604, −1.275295840740173, −0.7608065867729209, 0, 0.7608065867729209, 1.275295840740173, 2.084748482744604, 2.437526439541403, 3.181828420259292, 3.918566875015730, 4.443008488384649, 4.797452405995836, 5.610350892338309, 6.123535742261219, 6.241476382314797, 7.000062563010797, 7.510844396810060, 7.958324690118411, 8.288113916018521, 8.878950245323618, 9.440180515475772, 9.894406702440718, 10.21405918934015, 10.78144345705871, 11.12371117122447, 11.75403892018648, 11.95913915685931, 12.33709740289129, 13.06385796071402

Graph of the $Z$-function along the critical line