Properties

Label 2-249900-1.1-c1-0-60
Degree $2$
Conductor $249900$
Sign $-1$
Analytic cond. $1995.46$
Root an. cond. $44.6705$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 11-s − 7·13-s − 17-s − 3·19-s + 9·23-s − 27-s + 6·29-s − 4·31-s + 33-s + 10·37-s + 7·39-s − 3·41-s − 3·43-s − 8·47-s + 51-s + 4·53-s + 3·57-s − 12·59-s + 6·61-s + 8·67-s − 9·69-s − 8·71-s − 10·73-s + 81-s + 10·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 0.301·11-s − 1.94·13-s − 0.242·17-s − 0.688·19-s + 1.87·23-s − 0.192·27-s + 1.11·29-s − 0.718·31-s + 0.174·33-s + 1.64·37-s + 1.12·39-s − 0.468·41-s − 0.457·43-s − 1.16·47-s + 0.140·51-s + 0.549·53-s + 0.397·57-s − 1.56·59-s + 0.768·61-s + 0.977·67-s − 1.08·69-s − 0.949·71-s − 1.17·73-s + 1/9·81-s + 1.09·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 249900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 249900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(249900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1995.46\)
Root analytic conductor: \(44.6705\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 249900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 7 T + p T^{2} \) 1.13.h
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09445958468609, −12.65735644837388, −12.05528800895327, −11.83796855785842, −11.15684340142370, −10.85195610551551, −10.31725199201190, −9.889937053152765, −9.430456451081164, −8.995411541558745, −8.382229472835370, −7.810538351480695, −7.414961271552457, −6.800011531759316, −6.632468953363002, −5.907814017321212, −5.295951911529886, −4.824291370515906, −4.658672385905390, −3.966359808931184, −3.082962955608933, −2.733783345737631, −2.152659428359070, −1.418726891341128, −0.6419549884822385, 0, 0.6419549884822385, 1.418726891341128, 2.152659428359070, 2.733783345737631, 3.082962955608933, 3.966359808931184, 4.658672385905390, 4.824291370515906, 5.295951911529886, 5.907814017321212, 6.632468953363002, 6.800011531759316, 7.414961271552457, 7.810538351480695, 8.382229472835370, 8.995411541558745, 9.430456451081164, 9.889937053152765, 10.31725199201190, 10.85195610551551, 11.15684340142370, 11.83796855785842, 12.05528800895327, 12.65735644837388, 13.09445958468609

Graph of the $Z$-function along the critical line