Properties

Label 2-248430-1.1-c1-0-133
Degree $2$
Conductor $248430$
Sign $-1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s + 3·11-s − 12-s − 15-s + 16-s − 17-s − 18-s − 7·19-s + 20-s − 3·22-s + 2·23-s + 24-s + 25-s − 27-s − 7·29-s + 30-s − 10·31-s − 32-s − 3·33-s + 34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.904·11-s − 0.288·12-s − 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 1.60·19-s + 0.223·20-s − 0.639·22-s + 0.417·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s − 1.29·29-s + 0.182·30-s − 1.79·31-s − 0.176·32-s − 0.522·33-s + 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94893443105744, −12.66474990554284, −12.13840166965922, −11.54052869081473, −11.04865349927968, −10.85956327933667, −10.46065661878738, −9.656005552666964, −9.420660445174945, −8.968215743880580, −8.618168472803528, −7.841029034818617, −7.455061296646733, −6.873784205334031, −6.529002664447785, −5.931744156862529, −5.679734569783695, −5.000911366964120, −4.215225508805060, −4.007672117110624, −3.236870771792858, −2.455637422655746, −1.913723272073394, −1.495850999910814, −0.6924160866569523, 0, 0.6924160866569523, 1.495850999910814, 1.913723272073394, 2.455637422655746, 3.236870771792858, 4.007672117110624, 4.215225508805060, 5.000911366964120, 5.679734569783695, 5.931744156862529, 6.529002664447785, 6.873784205334031, 7.455061296646733, 7.841029034818617, 8.618168472803528, 8.968215743880580, 9.420660445174945, 9.656005552666964, 10.46065661878738, 10.85956327933667, 11.04865349927968, 11.54052869081473, 12.13840166965922, 12.66474990554284, 12.94893443105744

Graph of the $Z$-function along the critical line