Properties

Label 2-498e2-1.1-c1-0-4
Degree $2$
Conductor $248004$
Sign $1$
Analytic cond. $1980.32$
Root an. cond. $44.5008$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 2·7-s + 3·11-s + 4·13-s + 7·19-s + 3·23-s + 4·25-s + 6·29-s + 8·31-s − 6·35-s + 11·37-s + 4·43-s − 12·47-s − 3·49-s − 3·53-s − 9·55-s + 9·59-s − 61-s − 12·65-s + 13·67-s + 6·71-s + 10·73-s + 6·77-s − 8·79-s + 3·89-s + 8·91-s − 21·95-s + ⋯
L(s)  = 1  − 1.34·5-s + 0.755·7-s + 0.904·11-s + 1.10·13-s + 1.60·19-s + 0.625·23-s + 4/5·25-s + 1.11·29-s + 1.43·31-s − 1.01·35-s + 1.80·37-s + 0.609·43-s − 1.75·47-s − 3/7·49-s − 0.412·53-s − 1.21·55-s + 1.17·59-s − 0.128·61-s − 1.48·65-s + 1.58·67-s + 0.712·71-s + 1.17·73-s + 0.683·77-s − 0.900·79-s + 0.317·89-s + 0.838·91-s − 2.15·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248004 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248004 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248004\)    =    \(2^{2} \cdot 3^{2} \cdot 83^{2}\)
Sign: $1$
Analytic conductor: \(1980.32\)
Root analytic conductor: \(44.5008\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 248004,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.900600606\)
\(L(\frac12)\) \(\approx\) \(3.900600606\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
83 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79361056937112, −12.27569941517440, −11.73237850132013, −11.47516342608958, −11.23883004664552, −10.82163713086095, −9.886540057265651, −9.737646895324131, −9.042512626166982, −8.484226385082263, −8.082486126929219, −7.904878359793518, −7.266632623280799, −6.605342416227464, −6.420848296653014, −5.645759187517050, −4.963965289422579, −4.656730609096063, −4.032266918487558, −3.656117219901374, −3.089244082620823, −2.566607781016830, −1.537595389206382, −0.9949637890949773, −0.7014044597262417, 0.7014044597262417, 0.9949637890949773, 1.537595389206382, 2.566607781016830, 3.089244082620823, 3.656117219901374, 4.032266918487558, 4.656730609096063, 4.963965289422579, 5.645759187517050, 6.420848296653014, 6.605342416227464, 7.266632623280799, 7.904878359793518, 8.082486126929219, 8.484226385082263, 9.042512626166982, 9.737646895324131, 9.886540057265651, 10.82163713086095, 11.23883004664552, 11.47516342608958, 11.73237850132013, 12.27569941517440, 12.79361056937112

Graph of the $Z$-function along the critical line