Properties

Label 2-246-1.1-c1-0-0
Degree $2$
Conductor $246$
Sign $1$
Analytic cond. $1.96431$
Root an. cond. $1.40154$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 3·5-s + 6-s − 2·7-s − 8-s + 9-s − 3·10-s + 2·11-s − 12-s + 13-s + 2·14-s − 3·15-s + 16-s + 5·17-s − 18-s − 19-s + 3·20-s + 2·21-s − 2·22-s + 6·23-s + 24-s + 4·25-s − 26-s − 27-s − 2·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.34·5-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.948·10-s + 0.603·11-s − 0.288·12-s + 0.277·13-s + 0.534·14-s − 0.774·15-s + 1/4·16-s + 1.21·17-s − 0.235·18-s − 0.229·19-s + 0.670·20-s + 0.436·21-s − 0.426·22-s + 1.25·23-s + 0.204·24-s + 4/5·25-s − 0.196·26-s − 0.192·27-s − 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 246 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 246 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(246\)    =    \(2 \cdot 3 \cdot 41\)
Sign: $1$
Analytic conductor: \(1.96431\)
Root analytic conductor: \(1.40154\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 246,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9386205914\)
\(L(\frac12)\) \(\approx\) \(0.9386205914\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
41 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 6 T + p T^{2} \) 1.37.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.03692258948577384580923570419, −10.89373506595971332057904971194, −9.953409099042967750861409917190, −9.534418094728046955756604334195, −8.356647240792238542821126916269, −6.78430324901641246819336686633, −6.26291645490747885242862369082, −5.13341372798534434135976920906, −3.11920280674024255742590168743, −1.37221072992549302129653289340, 1.37221072992549302129653289340, 3.11920280674024255742590168743, 5.13341372798534434135976920906, 6.26291645490747885242862369082, 6.78430324901641246819336686633, 8.356647240792238542821126916269, 9.534418094728046955756604334195, 9.953409099042967750861409917190, 10.89373506595971332057904971194, 12.03692258948577384580923570419

Graph of the $Z$-function along the critical line