Properties

Label 2-244608-1.1-c1-0-58
Degree $2$
Conductor $244608$
Sign $-1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s − 2·11-s + 13-s + 2·15-s + 4·19-s + 8·23-s − 25-s − 27-s − 8·29-s − 4·31-s + 2·33-s + 4·37-s − 39-s − 6·41-s − 10·43-s − 2·45-s − 10·47-s + 4·55-s − 4·57-s + 4·59-s + 2·61-s − 2·65-s + 8·67-s − 8·69-s + 75-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.603·11-s + 0.277·13-s + 0.516·15-s + 0.917·19-s + 1.66·23-s − 1/5·25-s − 0.192·27-s − 1.48·29-s − 0.718·31-s + 0.348·33-s + 0.657·37-s − 0.160·39-s − 0.937·41-s − 1.52·43-s − 0.298·45-s − 1.45·47-s + 0.539·55-s − 0.529·57-s + 0.520·59-s + 0.256·61-s − 0.248·65-s + 0.977·67-s − 0.963·69-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99900134990611, −12.75627748656640, −12.00690305780574, −11.69079405411097, −11.19324772080017, −11.03762613919907, −10.46287956885789, −9.729879409393801, −9.559498919188027, −8.905513702856924, −8.233613187793751, −7.989848822713569, −7.391833228446429, −6.951374929235332, −6.629624295999398, −5.796882007694422, −5.351439867398011, −5.014001330532359, −4.477037409697320, −3.643544338440765, −3.489794743175290, −2.848459493866724, −1.984519285232730, −1.401943438793734, −0.6285980543120645, 0, 0.6285980543120645, 1.401943438793734, 1.984519285232730, 2.848459493866724, 3.489794743175290, 3.643544338440765, 4.477037409697320, 5.014001330532359, 5.351439867398011, 5.796882007694422, 6.629624295999398, 6.951374929235332, 7.391833228446429, 7.989848822713569, 8.233613187793751, 8.905513702856924, 9.559498919188027, 9.729879409393801, 10.46287956885789, 11.03762613919907, 11.19324772080017, 11.69079405411097, 12.00690305780574, 12.75627748656640, 12.99900134990611

Graph of the $Z$-function along the critical line