Properties

Label 2-243360-1.1-c1-0-20
Degree $2$
Conductor $243360$
Sign $1$
Analytic cond. $1943.23$
Root an. cond. $44.0821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·11-s + 2·17-s − 4·19-s − 8·23-s + 25-s + 6·29-s + 10·37-s + 6·41-s − 4·43-s − 7·49-s − 6·53-s + 4·55-s + 12·59-s − 10·61-s + 12·67-s − 12·71-s + 10·73-s + 8·79-s + 16·83-s − 2·85-s + 14·89-s + 4·95-s + 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.20·11-s + 0.485·17-s − 0.917·19-s − 1.66·23-s + 1/5·25-s + 1.11·29-s + 1.64·37-s + 0.937·41-s − 0.609·43-s − 49-s − 0.824·53-s + 0.539·55-s + 1.56·59-s − 1.28·61-s + 1.46·67-s − 1.42·71-s + 1.17·73-s + 0.900·79-s + 1.75·83-s − 0.216·85-s + 1.48·89-s + 0.410·95-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243360\)    =    \(2^{5} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1943.23\)
Root analytic conductor: \(44.0821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 243360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.375332442\)
\(L(\frac12)\) \(\approx\) \(1.375332442\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93195873237334, −12.35052842498801, −12.05826551427896, −11.49913076783771, −10.94485584192621, −10.63452679554344, −10.07648717797815, −9.735406212476130, −9.208608844059391, −8.429565431279994, −8.127581848896697, −7.819455413030871, −7.401462240164188, −6.465225488022731, −6.359211802643724, −5.719305717718048, −5.095219941604945, −4.641358181729374, −4.157759429422522, −3.566170805075589, −2.986894353539280, −2.356230974406878, −1.984903622665048, −0.9927852369841457, −0.3636002755899195, 0.3636002755899195, 0.9927852369841457, 1.984903622665048, 2.356230974406878, 2.986894353539280, 3.566170805075589, 4.157759429422522, 4.641358181729374, 5.095219941604945, 5.719305717718048, 6.359211802643724, 6.465225488022731, 7.401462240164188, 7.819455413030871, 8.127581848896697, 8.429565431279994, 9.208608844059391, 9.735406212476130, 10.07648717797815, 10.63452679554344, 10.94485584192621, 11.49913076783771, 12.05826551427896, 12.35052842498801, 12.93195873237334

Graph of the $Z$-function along the critical line