Properties

Label 2-492e2-1.1-c1-0-45
Degree $2$
Conductor $242064$
Sign $-1$
Analytic cond. $1932.89$
Root an. cond. $43.9646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s − 4·11-s − 4·13-s − 2·17-s + 4·23-s − 25-s − 4·31-s + 4·35-s + 2·37-s + 12·43-s + 2·47-s − 3·49-s − 4·53-s − 8·55-s − 4·59-s + 10·61-s − 8·65-s − 8·67-s + 10·71-s − 2·73-s − 8·77-s − 14·79-s − 12·83-s − 4·85-s + 10·89-s − 8·91-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s − 1.20·11-s − 1.10·13-s − 0.485·17-s + 0.834·23-s − 1/5·25-s − 0.718·31-s + 0.676·35-s + 0.328·37-s + 1.82·43-s + 0.291·47-s − 3/7·49-s − 0.549·53-s − 1.07·55-s − 0.520·59-s + 1.28·61-s − 0.992·65-s − 0.977·67-s + 1.18·71-s − 0.234·73-s − 0.911·77-s − 1.57·79-s − 1.31·83-s − 0.433·85-s + 1.05·89-s − 0.838·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 242064 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242064 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(242064\)    =    \(2^{4} \cdot 3^{2} \cdot 41^{2}\)
Sign: $-1$
Analytic conductor: \(1932.89\)
Root analytic conductor: \(43.9646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 242064,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
41 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05189229738289, −12.78535349150175, −12.29541855662595, −11.66816078997884, −11.09924921177065, −10.91608406919534, −10.22372775932669, −9.975777436676666, −9.379434573686756, −8.984113478334215, −8.474578710161864, −7.804803962210787, −7.496512483397093, −7.115149908749503, −6.364497869629610, −5.862379570902125, −5.374672872005797, −4.987437894206872, −4.555287276830529, −3.946775901846484, −3.055713251702345, −2.593445191995638, −2.141680315642242, −1.644694231238709, −0.7943637587232874, 0, 0.7943637587232874, 1.644694231238709, 2.141680315642242, 2.593445191995638, 3.055713251702345, 3.946775901846484, 4.555287276830529, 4.987437894206872, 5.374672872005797, 5.862379570902125, 6.364497869629610, 7.115149908749503, 7.496512483397093, 7.804803962210787, 8.474578710161864, 8.984113478334215, 9.379434573686756, 9.975777436676666, 10.22372775932669, 10.91608406919534, 11.09924921177065, 11.66816078997884, 12.29541855662595, 12.78535349150175, 13.05189229738289

Graph of the $Z$-function along the critical line