Properties

Label 2-235950-1.1-c1-0-104
Degree $2$
Conductor $235950$
Sign $-1$
Analytic cond. $1884.07$
Root an. cond. $43.4058$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s − 12-s + 13-s + 14-s + 16-s − 18-s − 2·19-s + 21-s − 3·23-s + 24-s − 26-s − 27-s − 28-s + 3·29-s + 8·31-s − 32-s + 36-s − 2·37-s + 2·38-s − 39-s + 9·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s + 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.235·18-s − 0.458·19-s + 0.218·21-s − 0.625·23-s + 0.204·24-s − 0.196·26-s − 0.192·27-s − 0.188·28-s + 0.557·29-s + 1.43·31-s − 0.176·32-s + 1/6·36-s − 0.328·37-s + 0.324·38-s − 0.160·39-s + 1.40·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1884.07\)
Root analytic conductor: \(43.4058\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 235950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21042867821795, −12.42575498088338, −12.13765007417907, −11.81261070957513, −11.17869869334118, −10.66805350876384, −10.48007916000441, −9.853801361738037, −9.506899770706950, −8.929876044848997, −8.518292673986239, −7.834455007696603, −7.670408867431168, −6.833326681756979, −6.532971442739193, −6.064615184439388, −5.648601237577201, −4.969338790079057, −4.302133907152536, −3.996492183125084, −3.109827945233598, −2.676757619250754, −2.010090598665395, −1.287885109758835, −0.7227442770004411, 0, 0.7227442770004411, 1.287885109758835, 2.010090598665395, 2.676757619250754, 3.109827945233598, 3.996492183125084, 4.302133907152536, 4.969338790079057, 5.648601237577201, 6.064615184439388, 6.532971442739193, 6.833326681756979, 7.670408867431168, 7.834455007696603, 8.518292673986239, 8.929876044848997, 9.506899770706950, 9.853801361738037, 10.48007916000441, 10.66805350876384, 11.17869869334118, 11.81261070957513, 12.13765007417907, 12.42575498088338, 13.21042867821795

Graph of the $Z$-function along the critical line