Properties

Label 2-235200-1.1-c1-0-364
Degree $2$
Conductor $235200$
Sign $1$
Analytic cond. $1878.08$
Root an. cond. $43.3368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 4·11-s + 6·13-s − 2·17-s + 8·19-s + 4·23-s + 27-s − 6·29-s + 4·31-s − 4·33-s − 2·37-s + 6·39-s + 2·41-s + 12·43-s − 2·51-s + 2·53-s + 8·57-s + 4·59-s + 6·61-s + 4·67-s + 4·69-s − 8·71-s + 6·73-s + 16·79-s + 81-s − 4·83-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.20·11-s + 1.66·13-s − 0.485·17-s + 1.83·19-s + 0.834·23-s + 0.192·27-s − 1.11·29-s + 0.718·31-s − 0.696·33-s − 0.328·37-s + 0.960·39-s + 0.312·41-s + 1.82·43-s − 0.280·51-s + 0.274·53-s + 1.05·57-s + 0.520·59-s + 0.768·61-s + 0.488·67-s + 0.481·69-s − 0.949·71-s + 0.702·73-s + 1.80·79-s + 1/9·81-s − 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235200\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1878.08\)
Root analytic conductor: \(43.3368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 235200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.726109775\)
\(L(\frac12)\) \(\approx\) \(4.726109775\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94422191177242, −12.74606658654657, −11.82104924705917, −11.56177753440755, −10.98927042157404, −10.57996724275112, −10.22840702621955, −9.488395304959925, −9.081357106742367, −8.854850986125227, −8.071368890696600, −7.789714808634526, −7.394521027400028, −6.759114469450803, −6.240716390844025, −5.563033991330999, −5.309543303032830, −4.672218403194256, −3.962782518699730, −3.518134511066212, −3.051937043884990, −2.462207906104156, −1.895631833970042, −1.027203738552965, −0.6788200022517818, 0.6788200022517818, 1.027203738552965, 1.895631833970042, 2.462207906104156, 3.051937043884990, 3.518134511066212, 3.962782518699730, 4.672218403194256, 5.309543303032830, 5.563033991330999, 6.240716390844025, 6.759114469450803, 7.394521027400028, 7.789714808634526, 8.071368890696600, 8.854850986125227, 9.081357106742367, 9.488395304959925, 10.22840702621955, 10.57996724275112, 10.98927042157404, 11.56177753440755, 11.82104924705917, 12.74606658654657, 12.94422191177242

Graph of the $Z$-function along the critical line