Properties

Label 2-23400-1.1-c1-0-38
Degree $2$
Conductor $23400$
Sign $-1$
Analytic cond. $186.849$
Root an. cond. $13.6693$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·11-s + 13-s − 6·17-s + 4·19-s + 2·29-s − 4·31-s + 6·37-s + 6·41-s − 8·43-s − 7·49-s + 2·53-s − 4·59-s − 10·61-s − 12·67-s + 4·71-s − 14·73-s − 16·79-s + 12·83-s − 2·89-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.20·11-s + 0.277·13-s − 1.45·17-s + 0.917·19-s + 0.371·29-s − 0.718·31-s + 0.986·37-s + 0.937·41-s − 1.21·43-s − 49-s + 0.274·53-s − 0.520·59-s − 1.28·61-s − 1.46·67-s + 0.474·71-s − 1.63·73-s − 1.80·79-s + 1.31·83-s − 0.211·89-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23400\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(186.849\)
Root analytic conductor: \(13.6693\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.82970308814078, −15.03329197583722, −14.75170238202599, −14.09596229650379, −13.54462618269859, −13.13587569079189, −12.47501120893156, −11.77116003673693, −11.47767034652887, −10.89673660400005, −10.28184867995865, −9.471900079540558, −9.177038784973002, −8.638624174375151, −7.901250552112171, −7.269676281303710, −6.650984352013632, −6.182003938740287, −5.535233703383217, −4.578988382754620, −4.285652804857263, −3.417601181347216, −2.789020899216971, −1.799984620569868, −1.180737568371585, 0, 1.180737568371585, 1.799984620569868, 2.789020899216971, 3.417601181347216, 4.285652804857263, 4.578988382754620, 5.535233703383217, 6.182003938740287, 6.650984352013632, 7.269676281303710, 7.901250552112171, 8.638624174375151, 9.177038784973002, 9.471900079540558, 10.28184867995865, 10.89673660400005, 11.47767034652887, 11.77116003673693, 12.47501120893156, 13.13587569079189, 13.54462618269859, 14.09596229650379, 14.75170238202599, 15.03329197583722, 15.82970308814078

Graph of the $Z$-function along the critical line