Properties

Label 2-223440-1.1-c1-0-62
Degree $2$
Conductor $223440$
Sign $1$
Analytic cond. $1784.17$
Root an. cond. $42.2395$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s + 4·11-s − 2·13-s − 15-s + 6·17-s + 19-s + 25-s + 27-s + 2·29-s + 8·31-s + 4·33-s − 10·37-s − 2·39-s − 2·41-s − 4·43-s − 45-s + 6·51-s − 6·53-s − 4·55-s + 57-s − 10·61-s + 2·65-s + 4·67-s + 8·71-s − 14·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s + 1.20·11-s − 0.554·13-s − 0.258·15-s + 1.45·17-s + 0.229·19-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 1.43·31-s + 0.696·33-s − 1.64·37-s − 0.320·39-s − 0.312·41-s − 0.609·43-s − 0.149·45-s + 0.840·51-s − 0.824·53-s − 0.539·55-s + 0.132·57-s − 1.28·61-s + 0.248·65-s + 0.488·67-s + 0.949·71-s − 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 223440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 223440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(223440\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1784.17\)
Root analytic conductor: \(42.2395\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 223440,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.506235859\)
\(L(\frac12)\) \(\approx\) \(3.506235859\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
19 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87625046191691, −12.34520331541460, −11.99774632909440, −11.83295708942368, −11.14971510602644, −10.51750817096914, −10.04568291373229, −9.736464086268692, −9.186862180088769, −8.684221778584487, −8.259263079378283, −7.771602645982556, −7.318980284539295, −6.813844182854954, −6.344496251108024, −5.794679925781643, −4.976330366675064, −4.756867785838445, −4.040774422850266, −3.399584527075368, −3.262450177791084, −2.505428757398449, −1.705347202657691, −1.245438824127397, −0.5259304434021211, 0.5259304434021211, 1.245438824127397, 1.705347202657691, 2.505428757398449, 3.262450177791084, 3.399584527075368, 4.040774422850266, 4.756867785838445, 4.976330366675064, 5.794679925781643, 6.344496251108024, 6.813844182854954, 7.318980284539295, 7.771602645982556, 8.259263079378283, 8.684221778584487, 9.186862180088769, 9.736464086268692, 10.04568291373229, 10.51750817096914, 11.14971510602644, 11.83295708942368, 11.99774632909440, 12.34520331541460, 12.87625046191691

Graph of the $Z$-function along the critical line