Properties

Label 2-22176-1.1-c1-0-7
Degree $2$
Conductor $22176$
Sign $1$
Analytic cond. $177.076$
Root an. cond. $13.3070$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 7-s + 11-s + 6·13-s + 2·19-s + 4·23-s + 11·25-s + 2·29-s + 2·31-s + 4·35-s + 2·37-s + 4·43-s + 6·47-s + 49-s − 2·53-s − 4·55-s + 14·61-s − 24·65-s + 12·67-s + 8·71-s − 4·73-s − 77-s − 8·79-s + 2·83-s + 14·89-s − 6·91-s − 8·95-s + ⋯
L(s)  = 1  − 1.78·5-s − 0.377·7-s + 0.301·11-s + 1.66·13-s + 0.458·19-s + 0.834·23-s + 11/5·25-s + 0.371·29-s + 0.359·31-s + 0.676·35-s + 0.328·37-s + 0.609·43-s + 0.875·47-s + 1/7·49-s − 0.274·53-s − 0.539·55-s + 1.79·61-s − 2.97·65-s + 1.46·67-s + 0.949·71-s − 0.468·73-s − 0.113·77-s − 0.900·79-s + 0.219·83-s + 1.48·89-s − 0.628·91-s − 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(22176\)    =    \(2^{5} \cdot 3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(177.076\)
Root analytic conductor: \(13.3070\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 22176,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.788157530\)
\(L(\frac12)\) \(\approx\) \(1.788157530\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
11 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.67575861839741, −15.11034157820158, −14.55005552949271, −13.92764942355743, −13.26356302025437, −12.78815298473628, −12.17645277377064, −11.67607869140489, −11.14398407911992, −10.86343044034429, −10.09566757903756, −9.237405571614405, −8.776711552140450, −8.200646607091586, −7.790576662671874, −6.972365614570151, −6.655110794419205, −5.834725941722024, −5.070586729034815, −4.267680201214145, −3.780570423742223, −3.346032181242030, −2.558202612736574, −1.165791796976558, −0.6537611495166747, 0.6537611495166747, 1.165791796976558, 2.558202612736574, 3.346032181242030, 3.780570423742223, 4.267680201214145, 5.070586729034815, 5.834725941722024, 6.655110794419205, 6.972365614570151, 7.790576662671874, 8.200646607091586, 8.776711552140450, 9.237405571614405, 10.09566757903756, 10.86343044034429, 11.14398407911992, 11.67607869140489, 12.17645277377064, 12.78815298473628, 13.26356302025437, 13.92764942355743, 14.55005552949271, 15.11034157820158, 15.67575861839741

Graph of the $Z$-function along the critical line