Properties

Label 2-21840-1.1-c1-0-17
Degree $2$
Conductor $21840$
Sign $1$
Analytic cond. $174.393$
Root an. cond. $13.2058$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 7-s + 9-s − 4·11-s + 13-s + 15-s + 2·17-s + 4·19-s + 21-s + 25-s + 27-s − 2·29-s − 8·31-s − 4·33-s + 35-s + 6·37-s + 39-s − 6·41-s − 4·43-s + 45-s + 49-s + 2·51-s + 6·53-s − 4·55-s + 4·57-s + 12·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s − 1.20·11-s + 0.277·13-s + 0.258·15-s + 0.485·17-s + 0.917·19-s + 0.218·21-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 1.43·31-s − 0.696·33-s + 0.169·35-s + 0.986·37-s + 0.160·39-s − 0.937·41-s − 0.609·43-s + 0.149·45-s + 1/7·49-s + 0.280·51-s + 0.824·53-s − 0.539·55-s + 0.529·57-s + 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21840\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(174.393\)
Root analytic conductor: \(13.2058\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.141784427\)
\(L(\frac12)\) \(\approx\) \(3.141784427\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 - T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.44093530860006, −14.94943981131804, −14.49762490915982, −13.89389898546801, −13.34027980518008, −13.05534236043038, −12.39206386579119, −11.68047218659729, −11.13476591514988, −10.49605116607448, −9.993546240977160, −9.495485973568511, −8.816602903183267, −8.276315703678912, −7.651025386189811, −7.282512913237539, −6.481513135108334, −5.505527357854855, −5.385934580296882, −4.544491834983459, −3.648214814374861, −3.114761887270748, −2.305986544102028, −1.700443882763373, −0.6953227592868731, 0.6953227592868731, 1.700443882763373, 2.305986544102028, 3.114761887270748, 3.648214814374861, 4.544491834983459, 5.385934580296882, 5.505527357854855, 6.481513135108334, 7.282512913237539, 7.651025386189811, 8.276315703678912, 8.816602903183267, 9.495485973568511, 9.993546240977160, 10.49605116607448, 11.13476591514988, 11.68047218659729, 12.39206386579119, 13.05534236043038, 13.34027980518008, 13.89389898546801, 14.49762490915982, 14.94943981131804, 15.44093530860006

Graph of the $Z$-function along the critical line