Properties

Label 2-215600-1.1-c1-0-35
Degree $2$
Conductor $215600$
Sign $1$
Analytic cond. $1721.57$
Root an. cond. $41.4918$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s + 11-s + 2·13-s − 6·17-s + 2·19-s − 6·23-s − 4·27-s + 8·31-s + 2·33-s + 4·37-s + 4·39-s − 12·41-s − 4·43-s − 12·47-s − 12·51-s + 4·57-s − 2·61-s + 8·67-s − 12·69-s − 12·71-s + 2·73-s − 14·79-s − 11·81-s − 12·83-s − 6·89-s + 16·93-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s + 0.301·11-s + 0.554·13-s − 1.45·17-s + 0.458·19-s − 1.25·23-s − 0.769·27-s + 1.43·31-s + 0.348·33-s + 0.657·37-s + 0.640·39-s − 1.87·41-s − 0.609·43-s − 1.75·47-s − 1.68·51-s + 0.529·57-s − 0.256·61-s + 0.977·67-s − 1.44·69-s − 1.42·71-s + 0.234·73-s − 1.57·79-s − 1.22·81-s − 1.31·83-s − 0.635·89-s + 1.65·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 215600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 215600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(215600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1721.57\)
Root analytic conductor: \(41.4918\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 215600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.284576303\)
\(L(\frac12)\) \(\approx\) \(2.284576303\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09318319271983, −12.79319918351607, −11.84441380323384, −11.60983126850380, −11.34478901027772, −10.52302346524287, −10.00022912780551, −9.759133159027958, −9.133764139565962, −8.595182306455428, −8.359958630547078, −8.031281859822501, −7.281009458334523, −6.852319153353786, −6.222547874678279, −5.972165763213458, −5.084953049875918, −4.560081280578665, −4.096761298586483, −3.484855685749981, −3.056104354972018, −2.488930889231368, −1.834173605975854, −1.452563236194468, −0.3634785447444082, 0.3634785447444082, 1.452563236194468, 1.834173605975854, 2.488930889231368, 3.056104354972018, 3.484855685749981, 4.096761298586483, 4.560081280578665, 5.084953049875918, 5.972165763213458, 6.222547874678279, 6.852319153353786, 7.281009458334523, 8.031281859822501, 8.359958630547078, 8.595182306455428, 9.133764139565962, 9.759133159027958, 10.00022912780551, 10.52302346524287, 11.34478901027772, 11.60983126850380, 11.84441380323384, 12.79319918351607, 13.09318319271983

Graph of the $Z$-function along the critical line