Properties

Label 2-215600-1.1-c1-0-79
Degree $2$
Conductor $215600$
Sign $-1$
Analytic cond. $1721.57$
Root an. cond. $41.4918$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s + 11-s − 5·13-s − 7·19-s − 3·23-s + 4·27-s + 3·29-s + 5·31-s − 2·33-s − 4·37-s + 10·39-s − 12·41-s − 5·43-s + 6·53-s + 14·57-s + 12·59-s + 10·61-s − 14·67-s + 6·69-s − 3·71-s − 8·73-s + 4·79-s − 11·81-s − 15·83-s − 6·87-s − 3·89-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s + 0.301·11-s − 1.38·13-s − 1.60·19-s − 0.625·23-s + 0.769·27-s + 0.557·29-s + 0.898·31-s − 0.348·33-s − 0.657·37-s + 1.60·39-s − 1.87·41-s − 0.762·43-s + 0.824·53-s + 1.85·57-s + 1.56·59-s + 1.28·61-s − 1.71·67-s + 0.722·69-s − 0.356·71-s − 0.936·73-s + 0.450·79-s − 1.22·81-s − 1.64·83-s − 0.643·87-s − 0.317·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 215600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 215600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(215600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(1721.57\)
Root analytic conductor: \(41.4918\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 215600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20980667837503, −12.59650126653366, −12.06211858159244, −11.89964115834824, −11.56590532573759, −10.85891217707022, −10.38925906162455, −10.05033327307609, −9.794978782101738, −8.824378123315609, −8.513225527459724, −8.166639062962214, −7.238612486249526, −6.949958723939219, −6.516345722706888, −6.009225095583310, −5.489466531311912, −4.976755715970547, −4.548066103579614, −4.103661210087136, −3.325752612105241, −2.642723083687284, −2.102508200702464, −1.447505656264711, −0.5280766810687592, 0, 0.5280766810687592, 1.447505656264711, 2.102508200702464, 2.642723083687284, 3.325752612105241, 4.103661210087136, 4.548066103579614, 4.976755715970547, 5.489466531311912, 6.009225095583310, 6.516345722706888, 6.949958723939219, 7.238612486249526, 8.166639062962214, 8.513225527459724, 8.824378123315609, 9.794978782101738, 10.05033327307609, 10.38925906162455, 10.85891217707022, 11.56590532573759, 11.89964115834824, 12.06211858159244, 12.59650126653366, 13.20980667837503

Graph of the $Z$-function along the critical line