Properties

Label 2-214200-1.1-c1-0-121
Degree $2$
Conductor $214200$
Sign $1$
Analytic cond. $1710.39$
Root an. cond. $41.3569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 6·13-s + 17-s − 8·19-s + 6·29-s − 2·31-s − 6·37-s − 8·41-s − 10·43-s + 12·47-s + 49-s + 12·53-s + 4·59-s − 12·61-s − 14·67-s + 4·71-s − 14·73-s + 4·79-s − 4·83-s − 10·89-s + 6·91-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.377·7-s − 1.66·13-s + 0.242·17-s − 1.83·19-s + 1.11·29-s − 0.359·31-s − 0.986·37-s − 1.24·41-s − 1.52·43-s + 1.75·47-s + 1/7·49-s + 1.64·53-s + 0.520·59-s − 1.53·61-s − 1.71·67-s + 0.474·71-s − 1.63·73-s + 0.450·79-s − 0.439·83-s − 1.05·89-s + 0.628·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 214200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 214200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(214200\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1710.39\)
Root analytic conductor: \(41.3569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 214200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.49854684949674, −12.94076187946823, −12.44463494997492, −12.04179246175303, −11.88348382731655, −11.08652898590353, −10.41318471596307, −10.22843043220390, −9.961805777231031, −9.106849484376450, −8.750172847461436, −8.427332899479723, −7.671366360918327, −7.212355619554074, −6.850175220443442, −6.318044177191354, −5.765035733611880, −5.172655677357610, −4.674553037737302, −4.256669160707586, −3.588190986286071, −2.960266124686722, −2.418946594201806, −1.953551474337780, −1.172452812610621, 0, 0, 1.172452812610621, 1.953551474337780, 2.418946594201806, 2.960266124686722, 3.588190986286071, 4.256669160707586, 4.674553037737302, 5.172655677357610, 5.765035733611880, 6.318044177191354, 6.850175220443442, 7.212355619554074, 7.671366360918327, 8.427332899479723, 8.750172847461436, 9.106849484376450, 9.961805777231031, 10.22843043220390, 10.41318471596307, 11.08652898590353, 11.88348382731655, 12.04179246175303, 12.44463494997492, 12.94076187946823, 13.49854684949674

Graph of the $Z$-function along the critical line