Properties

Label 2-20475-1.1-c1-0-0
Degree $2$
Conductor $20475$
Sign $1$
Analytic cond. $163.493$
Root an. cond. $12.7864$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 7-s − 3·8-s − 4·11-s + 13-s − 14-s − 16-s − 5·17-s − 4·22-s − 3·23-s + 26-s + 28-s − 4·29-s − 4·31-s + 5·32-s − 5·34-s − 4·37-s − 10·43-s + 4·44-s − 3·46-s − 47-s + 49-s − 52-s − 8·53-s + 3·56-s − 4·58-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.377·7-s − 1.06·8-s − 1.20·11-s + 0.277·13-s − 0.267·14-s − 1/4·16-s − 1.21·17-s − 0.852·22-s − 0.625·23-s + 0.196·26-s + 0.188·28-s − 0.742·29-s − 0.718·31-s + 0.883·32-s − 0.857·34-s − 0.657·37-s − 1.52·43-s + 0.603·44-s − 0.442·46-s − 0.145·47-s + 1/7·49-s − 0.138·52-s − 1.09·53-s + 0.400·56-s − 0.525·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20475\)    =    \(3^{2} \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(163.493\)
Root analytic conductor: \(12.7864\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20475,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4232398638\)
\(L(\frac12)\) \(\approx\) \(0.4232398638\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.61158459809800, −15.15838459151263, −14.43980636337335, −13.84613699947269, −13.44414939170095, −13.01125142432796, −12.52047447623369, −12.02873710140357, −11.13962389577105, −10.82398178312370, −10.05874945812526, −9.432049611353329, −9.026183340812801, −8.223966446124984, −7.874470485979701, −6.918139391607871, −6.358378900709621, −5.743641236056891, −5.068177206437183, −4.671700833750241, −3.797318184193759, −3.329785741924851, −2.530003354568784, −1.731061556467857, −0.2264984259412237, 0.2264984259412237, 1.731061556467857, 2.530003354568784, 3.329785741924851, 3.797318184193759, 4.671700833750241, 5.068177206437183, 5.743641236056891, 6.358378900709621, 6.918139391607871, 7.874470485979701, 8.223966446124984, 9.026183340812801, 9.432049611353329, 10.05874945812526, 10.82398178312370, 11.13962389577105, 12.02873710140357, 12.52047447623369, 13.01125142432796, 13.44414939170095, 13.84613699947269, 14.43980636337335, 15.15838459151263, 15.61158459809800

Graph of the $Z$-function along the critical line