Properties

Label 2-20475-1.1-c1-0-3
Degree $2$
Conductor $20475$
Sign $1$
Analytic cond. $163.493$
Root an. cond. $12.7864$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 7-s + 2·11-s − 13-s + 2·14-s − 4·16-s − 4·17-s + 3·19-s − 4·22-s − 9·23-s + 2·26-s − 2·28-s + 29-s − 5·31-s + 8·32-s + 8·34-s + 8·37-s − 6·38-s − 6·41-s + 9·43-s + 4·44-s + 18·46-s − 3·47-s + 49-s − 2·52-s + 3·53-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s − 0.377·7-s + 0.603·11-s − 0.277·13-s + 0.534·14-s − 16-s − 0.970·17-s + 0.688·19-s − 0.852·22-s − 1.87·23-s + 0.392·26-s − 0.377·28-s + 0.185·29-s − 0.898·31-s + 1.41·32-s + 1.37·34-s + 1.31·37-s − 0.973·38-s − 0.937·41-s + 1.37·43-s + 0.603·44-s + 2.65·46-s − 0.437·47-s + 1/7·49-s − 0.277·52-s + 0.412·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20475\)    =    \(3^{2} \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(163.493\)
Root analytic conductor: \(12.7864\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20475,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5389144276\)
\(L(\frac12)\) \(\approx\) \(0.5389144276\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.94204484315187, −15.34789068769038, −14.47931960070556, −14.14543865327964, −13.39620872068891, −12.92744514236004, −12.17152185366500, −11.45958347714276, −11.31449960513569, −10.33789330511288, −9.995493261296479, −9.545742519267961, −8.827407364987852, −8.599096140415405, −7.640151991494499, −7.431186452390231, −6.611388241412069, −6.129452906777726, −5.333810213464571, −4.322278947798326, −3.960778091570047, −2.836335878487805, −2.113864442681334, −1.390806693958604, −0.3927121650580538, 0.3927121650580538, 1.390806693958604, 2.113864442681334, 2.836335878487805, 3.960778091570047, 4.322278947798326, 5.333810213464571, 6.129452906777726, 6.611388241412069, 7.431186452390231, 7.640151991494499, 8.599096140415405, 8.827407364987852, 9.545742519267961, 9.995493261296479, 10.33789330511288, 11.31449960513569, 11.45958347714276, 12.17152185366500, 12.92744514236004, 13.39620872068891, 14.14543865327964, 14.47931960070556, 15.34789068769038, 15.94204484315187

Graph of the $Z$-function along the critical line