Properties

Label 2-202675-1.1-c1-0-21
Degree $2$
Conductor $202675$
Sign $-1$
Analytic cond. $1618.36$
Root an. cond. $40.2289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 2·7-s + 3·8-s − 3·9-s + 4·13-s + 2·14-s − 16-s + 3·17-s + 3·18-s − 3·19-s − 3·23-s − 4·26-s + 2·28-s − 2·29-s + 2·31-s − 5·32-s − 3·34-s + 3·36-s − 2·37-s + 3·38-s + 10·43-s + 3·46-s + 11·47-s − 3·49-s − 4·52-s − 6·53-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.755·7-s + 1.06·8-s − 9-s + 1.10·13-s + 0.534·14-s − 1/4·16-s + 0.727·17-s + 0.707·18-s − 0.688·19-s − 0.625·23-s − 0.784·26-s + 0.377·28-s − 0.371·29-s + 0.359·31-s − 0.883·32-s − 0.514·34-s + 1/2·36-s − 0.328·37-s + 0.486·38-s + 1.52·43-s + 0.442·46-s + 1.60·47-s − 3/7·49-s − 0.554·52-s − 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 202675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 202675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(202675\)    =    \(5^{2} \cdot 11^{2} \cdot 67\)
Sign: $-1$
Analytic conductor: \(1618.36\)
Root analytic conductor: \(40.2289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 202675,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
11 \( 1 \)
67 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.19676715858822, −13.00016835799957, −12.21580537815440, −12.00314021941272, −11.22767320795739, −10.80790343107781, −10.46395895366399, −9.947666148068930, −9.430713941672321, −8.944018802848899, −8.703804449525690, −8.167738775585792, −7.682482870276248, −7.255017883938043, −6.440330993815162, −6.028006943166922, −5.690611242269915, −5.052610163342031, −4.306304294435059, −3.895538265424152, −3.352593542714876, −2.767736005189749, −2.050860383496818, −1.303001414709483, −0.6522618040879662, 0, 0.6522618040879662, 1.303001414709483, 2.050860383496818, 2.767736005189749, 3.352593542714876, 3.895538265424152, 4.306304294435059, 5.052610163342031, 5.690611242269915, 6.028006943166922, 6.440330993815162, 7.255017883938043, 7.682482870276248, 8.167738775585792, 8.703804449525690, 8.944018802848899, 9.430713941672321, 9.947666148068930, 10.46395895366399, 10.80790343107781, 11.22767320795739, 12.00314021941272, 12.21580537815440, 13.00016835799957, 13.19676715858822

Graph of the $Z$-function along the critical line