Properties

Label 2-200376-1.1-c1-0-21
Degree $2$
Conductor $200376$
Sign $-1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s − 5·13-s − 7·17-s − 6·19-s − 23-s − 4·25-s + 29-s + 7·31-s − 35-s + 7·37-s − 12·41-s − 6·43-s + 7·47-s − 6·49-s − 2·53-s − 8·59-s − 10·61-s + 5·65-s + 9·67-s − 9·71-s + 8·73-s + 79-s − 14·83-s + 7·85-s + 12·89-s − 5·91-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s − 1.38·13-s − 1.69·17-s − 1.37·19-s − 0.208·23-s − 4/5·25-s + 0.185·29-s + 1.25·31-s − 0.169·35-s + 1.15·37-s − 1.87·41-s − 0.914·43-s + 1.02·47-s − 6/7·49-s − 0.274·53-s − 1.04·59-s − 1.28·61-s + 0.620·65-s + 1.09·67-s − 1.06·71-s + 0.936·73-s + 0.112·79-s − 1.53·83-s + 0.759·85-s + 1.27·89-s − 0.524·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 6 T + p T^{2} \) 1.19.g
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23122284452804, −12.82161732204335, −12.35416476699718, −11.73989385832571, −11.57821472126824, −11.00702490127774, −10.46416266421264, −10.03011346922012, −9.614772913896198, −8.848411481263400, −8.653207331236493, −7.942897017866703, −7.734198146030456, −7.036417121861656, −6.442451278921638, −6.325116185541801, −5.432302451972758, −4.748427788286337, −4.506665560362473, −4.152568515284308, −3.269685320967104, −2.718385021312629, −2.020315740958778, −1.795495989408448, −0.5610044450055688, 0, 0.5610044450055688, 1.795495989408448, 2.020315740958778, 2.718385021312629, 3.269685320967104, 4.152568515284308, 4.506665560362473, 4.748427788286337, 5.432302451972758, 6.325116185541801, 6.442451278921638, 7.036417121861656, 7.734198146030456, 7.942897017866703, 8.653207331236493, 8.848411481263400, 9.614772913896198, 10.03011346922012, 10.46416266421264, 11.00702490127774, 11.57821472126824, 11.73989385832571, 12.35416476699718, 12.82161732204335, 13.23122284452804

Graph of the $Z$-function along the critical line