Properties

Label 200376.q
Number of curves $1$
Conductor $200376$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 200376.q1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 200376.q do not have complex multiplication.

Modular form 200376.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 5 q^{13} - 7 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 200376.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
200376.q1 200376be1 \([0, 0, 0, -2047683, 205604894]\) \(359003179442/200851893\) \(531238474388511369216\) \([]\) \(7372800\) \(2.6670\) \(\Gamma_0(N)\)-optimal