Properties

Label 2-198198-1.1-c1-0-74
Degree $2$
Conductor $198198$
Sign $-1$
Analytic cond. $1582.61$
Root an. cond. $39.7821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s − 7-s − 8-s + 2·10-s − 13-s + 14-s + 16-s + 2·17-s + 4·19-s − 2·20-s − 25-s + 26-s − 28-s + 6·29-s + 8·31-s − 32-s − 2·34-s + 2·35-s + 6·37-s − 4·38-s + 2·40-s + 2·41-s − 8·43-s + 49-s + 50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.377·7-s − 0.353·8-s + 0.632·10-s − 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.485·17-s + 0.917·19-s − 0.447·20-s − 1/5·25-s + 0.196·26-s − 0.188·28-s + 1.11·29-s + 1.43·31-s − 0.176·32-s − 0.342·34-s + 0.338·35-s + 0.986·37-s − 0.648·38-s + 0.316·40-s + 0.312·41-s − 1.21·43-s + 1/7·49-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198198\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1582.61\)
Root analytic conductor: \(39.7821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 198198,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33424370191005, −12.70984137023222, −12.11194165169849, −11.81000300133288, −11.62339088483252, −10.93534177577423, −10.35593222930268, −9.971421690357015, −9.639744940735299, −9.047316708264227, −8.430752507544920, −8.094641209864898, −7.710405499010008, −7.059593169964462, −6.840077411636874, −6.058751209191454, −5.701834272642647, −4.933969290962747, −4.415865865667605, −3.881714560921548, −3.108385428826073, −2.906401228739157, −2.146106668390494, −1.225812371770995, −0.7793198609558972, 0, 0.7793198609558972, 1.225812371770995, 2.146106668390494, 2.906401228739157, 3.108385428826073, 3.881714560921548, 4.415865865667605, 4.933969290962747, 5.701834272642647, 6.058751209191454, 6.840077411636874, 7.059593169964462, 7.710405499010008, 8.094641209864898, 8.430752507544920, 9.047316708264227, 9.639744940735299, 9.971421690357015, 10.35593222930268, 10.93534177577423, 11.62339088483252, 11.81000300133288, 12.11194165169849, 12.70984137023222, 13.33424370191005

Graph of the $Z$-function along the critical line