| L(s)  = 1 | + 3-s         + 2·7-s     + 9-s     − 4·11-s     − 4·13-s         + 2·17-s     − 8·19-s     + 2·21-s     + 4·23-s         + 27-s     + 8·29-s     − 4·31-s     − 4·33-s         + 2·37-s     − 4·39-s     − 41-s     − 4·43-s         − 2·47-s     − 3·49-s     + 2·51-s     + 4·53-s         − 8·57-s     + 12·59-s     + 6·61-s     + 2·63-s         − 16·67-s     + 4·69-s  + ⋯ | 
| L(s)  = 1 | + 0.577·3-s         + 0.755·7-s     + 1/3·9-s     − 1.20·11-s     − 1.10·13-s         + 0.485·17-s     − 1.83·19-s     + 0.436·21-s     + 0.834·23-s         + 0.192·27-s     + 1.48·29-s     − 0.718·31-s     − 0.696·33-s         + 0.328·37-s     − 0.640·39-s     − 0.156·41-s     − 0.609·43-s         − 0.291·47-s     − 3/7·49-s     + 0.280·51-s     + 0.549·53-s         − 1.05·57-s     + 1.56·59-s     + 0.768·61-s     + 0.251·63-s         − 1.95·67-s     + 0.481·69-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 196800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 - T \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 41 | \( 1 + T \) |  | 
| good | 7 | \( 1 - 2 T + p T^{2} \) | 1.7.ac | 
|  | 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e | 
|  | 13 | \( 1 + 4 T + p T^{2} \) | 1.13.e | 
|  | 17 | \( 1 - 2 T + p T^{2} \) | 1.17.ac | 
|  | 19 | \( 1 + 8 T + p T^{2} \) | 1.19.i | 
|  | 23 | \( 1 - 4 T + p T^{2} \) | 1.23.ae | 
|  | 29 | \( 1 - 8 T + p T^{2} \) | 1.29.ai | 
|  | 31 | \( 1 + 4 T + p T^{2} \) | 1.31.e | 
|  | 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac | 
|  | 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | 
|  | 47 | \( 1 + 2 T + p T^{2} \) | 1.47.c | 
|  | 53 | \( 1 - 4 T + p T^{2} \) | 1.53.ae | 
|  | 59 | \( 1 - 12 T + p T^{2} \) | 1.59.am | 
|  | 61 | \( 1 - 6 T + p T^{2} \) | 1.61.ag | 
|  | 67 | \( 1 + 16 T + p T^{2} \) | 1.67.q | 
|  | 71 | \( 1 + 6 T + p T^{2} \) | 1.71.g | 
|  | 73 | \( 1 - 2 T + p T^{2} \) | 1.73.ac | 
|  | 79 | \( 1 - 14 T + p T^{2} \) | 1.79.ao | 
|  | 83 | \( 1 + 4 T + p T^{2} \) | 1.83.e | 
|  | 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g | 
|  | 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.28728332534507, −12.89201010809002, −12.43687608335651, −12.02170175165095, −11.38758542800907, −10.89731876828780, −10.39139707625394, −10.13206536811288, −9.609265803057849, −8.852883315134067, −8.570822617446033, −8.016908726631564, −7.789955143306350, −7.028242958044707, −6.815955816137847, −6.010746112315324, −5.388393481191254, −4.898824136477226, −4.572645634734714, −3.987836873779235, −3.166127556025409, −2.712538254351731, −2.201333953867411, −1.711096912761761, −0.8005918400602032, 0, 
0.8005918400602032, 1.711096912761761, 2.201333953867411, 2.712538254351731, 3.166127556025409, 3.987836873779235, 4.572645634734714, 4.898824136477226, 5.388393481191254, 6.010746112315324, 6.815955816137847, 7.028242958044707, 7.789955143306350, 8.016908726631564, 8.570822617446033, 8.852883315134067, 9.609265803057849, 10.13206536811288, 10.39139707625394, 10.89731876828780, 11.38758542800907, 12.02170175165095, 12.43687608335651, 12.89201010809002, 13.28728332534507
