Properties

Label 2-196800-1.1-c1-0-180
Degree $2$
Conductor $196800$
Sign $-1$
Analytic cond. $1571.45$
Root an. cond. $39.6415$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·7-s + 9-s − 4·11-s − 4·13-s + 2·17-s − 8·19-s + 2·21-s + 4·23-s + 27-s + 8·29-s − 4·31-s − 4·33-s + 2·37-s − 4·39-s − 41-s − 4·43-s − 2·47-s − 3·49-s + 2·51-s + 4·53-s − 8·57-s + 12·59-s + 6·61-s + 2·63-s − 16·67-s + 4·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.755·7-s + 1/3·9-s − 1.20·11-s − 1.10·13-s + 0.485·17-s − 1.83·19-s + 0.436·21-s + 0.834·23-s + 0.192·27-s + 1.48·29-s − 0.718·31-s − 0.696·33-s + 0.328·37-s − 0.640·39-s − 0.156·41-s − 0.609·43-s − 0.291·47-s − 3/7·49-s + 0.280·51-s + 0.549·53-s − 1.05·57-s + 1.56·59-s + 0.768·61-s + 0.251·63-s − 1.95·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196800\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(1571.45\)
Root analytic conductor: \(39.6415\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 196800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
41 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28728332534507, −12.89201010809002, −12.43687608335651, −12.02170175165095, −11.38758542800907, −10.89731876828780, −10.39139707625394, −10.13206536811288, −9.609265803057849, −8.852883315134067, −8.570822617446033, −8.016908726631564, −7.789955143306350, −7.028242958044707, −6.815955816137847, −6.010746112315324, −5.388393481191254, −4.898824136477226, −4.572645634734714, −3.987836873779235, −3.166127556025409, −2.712538254351731, −2.201333953867411, −1.711096912761761, −0.8005918400602032, 0, 0.8005918400602032, 1.711096912761761, 2.201333953867411, 2.712538254351731, 3.166127556025409, 3.987836873779235, 4.572645634734714, 4.898824136477226, 5.388393481191254, 6.010746112315324, 6.815955816137847, 7.028242958044707, 7.789955143306350, 8.016908726631564, 8.570822617446033, 8.852883315134067, 9.609265803057849, 10.13206536811288, 10.39139707625394, 10.89731876828780, 11.38758542800907, 12.02170175165095, 12.43687608335651, 12.89201010809002, 13.28728332534507

Graph of the $Z$-function along the critical line