Properties

Label 2-440e2-1.1-c1-0-201
Degree $2$
Conductor $193600$
Sign $-1$
Analytic cond. $1545.90$
Root an. cond. $39.3179$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·7-s − 2·9-s + 2·13-s + 7·17-s − 5·19-s − 3·21-s + 2·23-s + 5·27-s − 3·29-s − 5·31-s + 5·37-s − 2·39-s − 2·41-s + 8·43-s + 10·47-s + 2·49-s − 7·51-s + 53-s + 5·57-s + 2·59-s + 7·61-s − 6·63-s − 8·67-s − 2·69-s + 71-s − 14·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.13·7-s − 2/3·9-s + 0.554·13-s + 1.69·17-s − 1.14·19-s − 0.654·21-s + 0.417·23-s + 0.962·27-s − 0.557·29-s − 0.898·31-s + 0.821·37-s − 0.320·39-s − 0.312·41-s + 1.21·43-s + 1.45·47-s + 2/7·49-s − 0.980·51-s + 0.137·53-s + 0.662·57-s + 0.260·59-s + 0.896·61-s − 0.755·63-s − 0.977·67-s − 0.240·69-s + 0.118·71-s − 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193600\)    =    \(2^{6} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(1545.90\)
Root analytic conductor: \(39.3179\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 193600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23336672200209, −12.81669678527216, −12.31378483642466, −11.77786801555934, −11.51974780688557, −10.98964164703156, −10.54181621549750, −10.35741849184152, −9.454002650867425, −9.020431138959908, −8.540823930226065, −8.111943637100500, −7.540182949384574, −7.257513864562720, −6.386832374466915, −5.955424011955570, −5.530655861531309, −5.178390668970023, −4.498224127486923, −3.990723769302871, −3.418189922949889, −2.691341125088013, −2.139471583451775, −1.333740412097354, −0.9156315560299503, 0, 0.9156315560299503, 1.333740412097354, 2.139471583451775, 2.691341125088013, 3.418189922949889, 3.990723769302871, 4.498224127486923, 5.178390668970023, 5.530655861531309, 5.955424011955570, 6.386832374466915, 7.257513864562720, 7.540182949384574, 8.111943637100500, 8.540823930226065, 9.020431138959908, 9.454002650867425, 10.35741849184152, 10.54181621549750, 10.98964164703156, 11.51974780688557, 11.77786801555934, 12.31378483642466, 12.81669678527216, 13.23336672200209

Graph of the $Z$-function along the critical line