Properties

Label 2-18450-1.1-c1-0-12
Degree $2$
Conductor $18450$
Sign $-1$
Analytic cond. $147.323$
Root an. cond. $12.1377$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·7-s − 8-s − 4·11-s − 4·13-s + 2·14-s + 16-s − 2·17-s + 4·22-s + 4·23-s + 4·26-s − 2·28-s + 4·31-s − 32-s + 2·34-s − 2·37-s + 41-s + 12·43-s − 4·44-s − 4·46-s − 2·47-s − 3·49-s − 4·52-s − 4·53-s + 2·56-s + 4·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s − 1.20·11-s − 1.10·13-s + 0.534·14-s + 1/4·16-s − 0.485·17-s + 0.852·22-s + 0.834·23-s + 0.784·26-s − 0.377·28-s + 0.718·31-s − 0.176·32-s + 0.342·34-s − 0.328·37-s + 0.156·41-s + 1.82·43-s − 0.603·44-s − 0.589·46-s − 0.291·47-s − 3/7·49-s − 0.554·52-s − 0.549·53-s + 0.267·56-s + 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(147.323\)
Root analytic conductor: \(12.1377\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
41 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.91282309553198, −15.69037566307338, −15.18892138668608, −14.40193865684756, −13.95858619766745, −12.96761694620595, −12.84432856943507, −12.29491371177267, −11.35462921182932, −11.09656386489006, −10.21632100275019, −9.959140425261315, −9.397528207206361, −8.705394302000914, −8.154651166362366, −7.440949377848109, −7.040957967735984, −6.389603268805273, −5.616013739127324, −5.021543609697324, −4.284885038499827, −3.254762032514055, −2.655462423439712, −2.131498705115093, −0.8384661867385436, 0, 0.8384661867385436, 2.131498705115093, 2.655462423439712, 3.254762032514055, 4.284885038499827, 5.021543609697324, 5.616013739127324, 6.389603268805273, 7.040957967735984, 7.440949377848109, 8.154651166362366, 8.705394302000914, 9.397528207206361, 9.959140425261315, 10.21632100275019, 11.09656386489006, 11.35462921182932, 12.29491371177267, 12.84432856943507, 12.96761694620595, 13.95858619766745, 14.40193865684756, 15.18892138668608, 15.69037566307338, 15.91282309553198

Graph of the $Z$-function along the critical line