Properties

Label 2-181056-1.1-c1-0-48
Degree $2$
Conductor $181056$
Sign $-1$
Analytic cond. $1445.73$
Root an. cond. $38.0228$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s + 4·11-s − 6·13-s + 2·15-s + 2·17-s − 4·19-s + 23-s − 25-s + 27-s − 6·29-s + 4·33-s + 2·37-s − 6·39-s + 41-s + 4·43-s + 2·45-s + 8·47-s − 7·49-s + 2·51-s − 6·53-s + 8·55-s − 4·57-s − 4·59-s − 6·61-s − 12·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s + 1.20·11-s − 1.66·13-s + 0.516·15-s + 0.485·17-s − 0.917·19-s + 0.208·23-s − 1/5·25-s + 0.192·27-s − 1.11·29-s + 0.696·33-s + 0.328·37-s − 0.960·39-s + 0.156·41-s + 0.609·43-s + 0.298·45-s + 1.16·47-s − 49-s + 0.280·51-s − 0.824·53-s + 1.07·55-s − 0.529·57-s − 0.520·59-s − 0.768·61-s − 1.48·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(181056\)    =    \(2^{6} \cdot 3 \cdot 23 \cdot 41\)
Sign: $-1$
Analytic conductor: \(1445.73\)
Root analytic conductor: \(38.0228\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 181056,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
23 \( 1 - T \)
41 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.47170928542467, −12.84681096467995, −12.47374063207069, −12.20822062089045, −11.50494598815296, −10.98004321906440, −10.52492506167761, −9.806124753600741, −9.544513454166155, −9.318868423599595, −8.793840411727727, −7.951314014701819, −7.792413840272646, −7.065353605531931, −6.628551434850052, −6.181333141568654, −5.544730918540167, −5.053108010538427, −4.463064506292812, −3.894815105599595, −3.409883642299504, −2.559247067765973, −2.221820959099613, −1.692021242835929, −0.9673896113520894, 0, 0.9673896113520894, 1.692021242835929, 2.221820959099613, 2.559247067765973, 3.409883642299504, 3.894815105599595, 4.463064506292812, 5.053108010538427, 5.544730918540167, 6.181333141568654, 6.628551434850052, 7.065353605531931, 7.792413840272646, 7.951314014701819, 8.793840411727727, 9.318868423599595, 9.544513454166155, 9.806124753600741, 10.52492506167761, 10.98004321906440, 11.50494598815296, 12.20822062089045, 12.47374063207069, 12.84681096467995, 13.47170928542467

Graph of the $Z$-function along the critical line