Properties

Label 2-180918-1.1-c1-0-4
Degree $2$
Conductor $180918$
Sign $1$
Analytic cond. $1444.63$
Root an. cond. $38.0083$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s − 2·11-s − 4·13-s + 16-s + 19-s − 2·20-s − 2·22-s − 25-s − 4·26-s − 2·29-s − 2·31-s + 32-s + 8·37-s + 38-s − 2·40-s − 2·41-s − 4·43-s − 2·44-s − 4·47-s − 7·49-s − 50-s − 4·52-s − 2·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s − 0.603·11-s − 1.10·13-s + 1/4·16-s + 0.229·19-s − 0.447·20-s − 0.426·22-s − 1/5·25-s − 0.784·26-s − 0.371·29-s − 0.359·31-s + 0.176·32-s + 1.31·37-s + 0.162·38-s − 0.316·40-s − 0.312·41-s − 0.609·43-s − 0.301·44-s − 0.583·47-s − 49-s − 0.141·50-s − 0.554·52-s − 0.274·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180918 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180918 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(180918\)    =    \(2 \cdot 3^{2} \cdot 19 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(1444.63\)
Root analytic conductor: \(38.0083\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 180918,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9581144918\)
\(L(\frac12)\) \(\approx\) \(0.9581144918\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
19 \( 1 - T \)
23 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.19015868878840, −12.77186918555781, −12.14984470744976, −11.79509614092128, −11.43179929501610, −10.99545052969360, −10.32297379625581, −9.964760522660315, −9.430948704572275, −8.850307728759136, −8.091807643195402, −7.781457573350448, −7.501809288704839, −6.781901586103622, −6.462645459862876, −5.564218068544390, −5.364995293155808, −4.593402460561960, −4.390821265324514, −3.621040736542870, −3.201353566683510, −2.578624253549772, −2.044999358061872, −1.243559094928580, −0.2457173507575646, 0.2457173507575646, 1.243559094928580, 2.044999358061872, 2.578624253549772, 3.201353566683510, 3.621040736542870, 4.390821265324514, 4.593402460561960, 5.364995293155808, 5.564218068544390, 6.462645459862876, 6.781901586103622, 7.501809288704839, 7.781457573350448, 8.091807643195402, 8.850307728759136, 9.430948704572275, 9.964760522660315, 10.32297379625581, 10.99545052969360, 11.43179929501610, 11.79509614092128, 12.14984470744976, 12.77186918555781, 13.19015868878840

Graph of the $Z$-function along the critical line