Properties

Label 2-179536-1.1-c1-0-10
Degree $2$
Conductor $179536$
Sign $1$
Analytic cond. $1433.60$
Root an. cond. $37.8629$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 3·5-s + 9-s − 6·11-s + 6·15-s + 5·17-s − 2·19-s − 8·23-s + 4·25-s + 4·27-s + 4·29-s + 3·31-s + 12·33-s − 37-s + 6·43-s − 3·45-s − 8·47-s − 10·51-s + 53-s + 18·55-s + 4·57-s + 12·59-s + 61-s − 7·67-s + 16·69-s − 8·71-s + 10·73-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.34·5-s + 1/3·9-s − 1.80·11-s + 1.54·15-s + 1.21·17-s − 0.458·19-s − 1.66·23-s + 4/5·25-s + 0.769·27-s + 0.742·29-s + 0.538·31-s + 2.08·33-s − 0.164·37-s + 0.914·43-s − 0.447·45-s − 1.16·47-s − 1.40·51-s + 0.137·53-s + 2.42·55-s + 0.529·57-s + 1.56·59-s + 0.128·61-s − 0.855·67-s + 1.92·69-s − 0.949·71-s + 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 179536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 179536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(179536\)    =    \(2^{4} \cdot 7^{2} \cdot 229\)
Sign: $1$
Analytic conductor: \(1433.60\)
Root analytic conductor: \(37.8629\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 179536,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7106492175\)
\(L(\frac12)\) \(\approx\) \(0.7106492175\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
229 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.91451573369406, −12.59095771769007, −12.00236267141282, −11.89919895489871, −11.34370838892705, −10.86114476699949, −10.34079650781623, −10.16278419966021, −9.578150647696745, −8.540083162134690, −8.268586166223245, −7.917273761410798, −7.434474311069760, −6.920474680274067, −6.237490959646675, −5.712819750480237, −5.441531577633858, −4.665640477017693, −4.474923465254447, −3.690377929915698, −3.144290304247787, −2.574555186642774, −1.805851667612700, −0.6976149633839411, −0.4069228870173896, 0.4069228870173896, 0.6976149633839411, 1.805851667612700, 2.574555186642774, 3.144290304247787, 3.690377929915698, 4.474923465254447, 4.665640477017693, 5.441531577633858, 5.712819750480237, 6.237490959646675, 6.920474680274067, 7.434474311069760, 7.917273761410798, 8.268586166223245, 8.540083162134690, 9.578150647696745, 10.16278419966021, 10.34079650781623, 10.86114476699949, 11.34370838892705, 11.89919895489871, 12.00236267141282, 12.59095771769007, 12.91451573369406

Graph of the $Z$-function along the critical line