Properties

Label 2-178752-1.1-c1-0-166
Degree $2$
Conductor $178752$
Sign $-1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 9-s − 11-s − 2·13-s + 3·15-s + 5·17-s − 19-s + 4·23-s + 4·25-s − 27-s + 6·29-s − 2·31-s + 33-s − 8·37-s + 2·39-s + 8·41-s + 13·43-s − 3·45-s + 13·47-s − 5·51-s + 6·53-s + 3·55-s + 57-s − 4·59-s − 13·61-s + 6·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 1/3·9-s − 0.301·11-s − 0.554·13-s + 0.774·15-s + 1.21·17-s − 0.229·19-s + 0.834·23-s + 4/5·25-s − 0.192·27-s + 1.11·29-s − 0.359·31-s + 0.174·33-s − 1.31·37-s + 0.320·39-s + 1.24·41-s + 1.98·43-s − 0.447·45-s + 1.89·47-s − 0.700·51-s + 0.824·53-s + 0.404·55-s + 0.132·57-s − 0.520·59-s − 1.66·61-s + 0.744·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 5 T + p T^{2} \) 1.17.af
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 13 T + p T^{2} \) 1.43.an
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.35023282936959, −12.56552638853020, −12.37455753603579, −12.12133064811916, −11.63961610042408, −10.93488478347877, −10.63227141686388, −10.42547856904987, −9.420540156161928, −9.304051550397635, −8.500090526586830, −8.048138882459383, −7.536898053121980, −7.226137785572721, −6.815769865241940, −5.855648248242400, −5.730784921787234, −4.857403345649882, −4.640492752812686, −3.881657656768099, −3.569073809707693, −2.772764860141148, −2.331185887926440, −1.182281228770664, −0.7748292124539817, 0, 0.7748292124539817, 1.182281228770664, 2.331185887926440, 2.772764860141148, 3.569073809707693, 3.881657656768099, 4.640492752812686, 4.857403345649882, 5.730784921787234, 5.855648248242400, 6.815769865241940, 7.226137785572721, 7.536898053121980, 8.048138882459383, 8.500090526586830, 9.304051550397635, 9.420540156161928, 10.42547856904987, 10.63227141686388, 10.93488478347877, 11.63961610042408, 12.12133064811916, 12.37455753603579, 12.56552638853020, 13.35023282936959

Graph of the $Z$-function along the critical line