Properties

Label 2-17784-1.1-c1-0-15
Degree $2$
Conductor $17784$
Sign $-1$
Analytic cond. $142.005$
Root an. cond. $11.9166$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s − 2·11-s + 13-s + 3·17-s + 19-s + 3·23-s − 25-s − 2·29-s + 5·31-s − 4·35-s + 37-s − 9·41-s + 43-s + 2·47-s − 3·49-s − 6·53-s − 4·55-s − 11·59-s − 61-s + 2·65-s − 7·67-s − 14·73-s + 4·77-s + 8·79-s + 10·83-s + 6·85-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s − 0.603·11-s + 0.277·13-s + 0.727·17-s + 0.229·19-s + 0.625·23-s − 1/5·25-s − 0.371·29-s + 0.898·31-s − 0.676·35-s + 0.164·37-s − 1.40·41-s + 0.152·43-s + 0.291·47-s − 3/7·49-s − 0.824·53-s − 0.539·55-s − 1.43·59-s − 0.128·61-s + 0.248·65-s − 0.855·67-s − 1.63·73-s + 0.455·77-s + 0.900·79-s + 1.09·83-s + 0.650·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17784\)    =    \(2^{3} \cdot 3^{2} \cdot 13 \cdot 19\)
Sign: $-1$
Analytic conductor: \(142.005\)
Root analytic conductor: \(11.9166\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17784,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.18283056206080, −15.48808903988244, −15.12678713082828, −14.32291768228848, −13.80870551238915, −13.33633292545255, −12.94984115569369, −12.28153273925486, −11.73103374709848, −10.99642262978332, −10.26496467067927, −10.06778628924856, −9.321516245338513, −8.959803081863086, −8.019421002983068, −7.609313053676732, −6.707878129985087, −6.268564677489446, −5.633637218291342, −5.098584730661523, −4.306822138568859, −3.272048798217258, −2.959047519369459, −1.979273274916489, −1.194157742470895, 0, 1.194157742470895, 1.979273274916489, 2.959047519369459, 3.272048798217258, 4.306822138568859, 5.098584730661523, 5.633637218291342, 6.268564677489446, 6.707878129985087, 7.609313053676732, 8.019421002983068, 8.959803081863086, 9.321516245338513, 10.06778628924856, 10.26496467067927, 10.99642262978332, 11.73103374709848, 12.28153273925486, 12.94984115569369, 13.33633292545255, 13.80870551238915, 14.32291768228848, 15.12678713082828, 15.48808903988244, 16.18283056206080

Graph of the $Z$-function along the critical line