Properties

Label 2-177450-1.1-c1-0-168
Degree $2$
Conductor $177450$
Sign $-1$
Analytic cond. $1416.94$
Root an. cond. $37.6423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s − 2·11-s − 12-s + 14-s + 16-s + 5·17-s − 18-s − 2·19-s + 21-s + 2·22-s + 7·23-s + 24-s − 27-s − 28-s + 10·29-s − 10·31-s − 32-s + 2·33-s − 5·34-s + 36-s + 2·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.603·11-s − 0.288·12-s + 0.267·14-s + 1/4·16-s + 1.21·17-s − 0.235·18-s − 0.458·19-s + 0.218·21-s + 0.426·22-s + 1.45·23-s + 0.204·24-s − 0.192·27-s − 0.188·28-s + 1.85·29-s − 1.79·31-s − 0.176·32-s + 0.348·33-s − 0.857·34-s + 1/6·36-s + 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177450\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1416.94\)
Root analytic conductor: \(37.6423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 177450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05026201633635, −12.84613831694713, −12.56846853969539, −11.93738049684658, −11.41093099479350, −10.95438617817541, −10.51562278768349, −10.26532915790157, −9.507730970412027, −9.260775940466758, −8.745397160914334, −7.991216785633071, −7.692513661935463, −7.226216866726943, −6.608739074500955, −6.187664859707560, −5.663109609827721, −5.126695165247606, −4.639437505054290, −3.907164131128969, −3.196904153374214, −2.791319275601007, −2.112973329915562, −1.225126493293934, −0.8179232705642690, 0, 0.8179232705642690, 1.225126493293934, 2.112973329915562, 2.791319275601007, 3.196904153374214, 3.907164131128969, 4.639437505054290, 5.126695165247606, 5.663109609827721, 6.187664859707560, 6.608739074500955, 7.226216866726943, 7.692513661935463, 7.991216785633071, 8.745397160914334, 9.260775940466758, 9.507730970412027, 10.26532915790157, 10.51562278768349, 10.95438617817541, 11.41093099479350, 11.93738049684658, 12.56846853969539, 12.84613831694713, 13.05026201633635

Graph of the $Z$-function along the critical line