L(s) = 1 | − 13-s − 3·17-s + 2·19-s − 3·23-s − 3·29-s − 31-s − 2·37-s − 3·41-s − 7·43-s + 6·47-s + 9·53-s − 3·59-s + 61-s + 8·67-s − 4·73-s − 8·79-s + 15·83-s + 6·89-s + 8·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
L(s) = 1 | − 0.277·13-s − 0.727·17-s + 0.458·19-s − 0.625·23-s − 0.557·29-s − 0.179·31-s − 0.328·37-s − 0.468·41-s − 1.06·43-s + 0.875·47-s + 1.23·53-s − 0.390·59-s + 0.128·61-s + 0.977·67-s − 0.468·73-s − 0.900·79-s + 1.64·83-s + 0.635·89-s + 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 \) | |
| 3 | \( 1 \) | |
| 5 | \( 1 \) | |
| 7 | \( 1 \) | |
good | 11 | \( 1 + p T^{2} \) | 1.11.a |
| 13 | \( 1 + T + p T^{2} \) | 1.13.b |
| 17 | \( 1 + 3 T + p T^{2} \) | 1.17.d |
| 19 | \( 1 - 2 T + p T^{2} \) | 1.19.ac |
| 23 | \( 1 + 3 T + p T^{2} \) | 1.23.d |
| 29 | \( 1 + 3 T + p T^{2} \) | 1.29.d |
| 31 | \( 1 + T + p T^{2} \) | 1.31.b |
| 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c |
| 41 | \( 1 + 3 T + p T^{2} \) | 1.41.d |
| 43 | \( 1 + 7 T + p T^{2} \) | 1.43.h |
| 47 | \( 1 - 6 T + p T^{2} \) | 1.47.ag |
| 53 | \( 1 - 9 T + p T^{2} \) | 1.53.aj |
| 59 | \( 1 + 3 T + p T^{2} \) | 1.59.d |
| 61 | \( 1 - T + p T^{2} \) | 1.61.ab |
| 67 | \( 1 - 8 T + p T^{2} \) | 1.67.ai |
| 71 | \( 1 + p T^{2} \) | 1.71.a |
| 73 | \( 1 + 4 T + p T^{2} \) | 1.73.e |
| 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i |
| 83 | \( 1 - 15 T + p T^{2} \) | 1.83.ap |
| 89 | \( 1 - 6 T + p T^{2} \) | 1.89.ag |
| 97 | \( 1 - 8 T + p T^{2} \) | 1.97.ai |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.50021461159209, −13.03906642466091, −12.36930719203186, −12.02415403422624, −11.59761253838464, −11.02905380939939, −10.64688294416134, −9.941293019490492, −9.815331984913899, −8.978558122238730, −8.779757298207559, −8.143638493794041, −7.595760655875791, −7.166561194767019, −6.651356596744033, −6.125348233496245, −5.540114235711455, −5.072533852574598, −4.536817872798309, −3.867116924594781, −3.492846482030478, −2.721955591237241, −2.153064712534924, −1.626192808682146, −0.7491736046514964, 0,
0.7491736046514964, 1.626192808682146, 2.153064712534924, 2.721955591237241, 3.492846482030478, 3.867116924594781, 4.536817872798309, 5.072533852574598, 5.540114235711455, 6.125348233496245, 6.651356596744033, 7.166561194767019, 7.595760655875791, 8.143638493794041, 8.779757298207559, 8.978558122238730, 9.815331984913899, 9.941293019490492, 10.64688294416134, 11.02905380939939, 11.59761253838464, 12.02415403422624, 12.36930719203186, 13.03906642466091, 13.50021461159209